Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution

Rendering an accurate image of an isosurface in a volumetric field typically requires large numbers of data samples. Reducing this number lies at the core of research in volume rendering. With the advent of deep learning networks, a number of architectures have been proposed recently to infer missin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 6 vom: 28. Juni, Seite 3064-3078
1. Verfasser: Weiss, Sebastian (VerfasserIn)
Weitere Verfasser: Chu, Mengyu, Thuerey, Nils, Westermann, Rudiger
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM303982527
003 DE-627
005 20231225114008.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2956697  |2 doi 
028 5 2 |a pubmed24n1013.xml 
035 |a (DE-627)NLM303982527 
035 |a (NLM)31796410 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Weiss, Sebastian  |e verfasserin  |4 aut 
245 1 0 |a Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Rendering an accurate image of an isosurface in a volumetric field typically requires large numbers of data samples. Reducing this number lies at the core of research in volume rendering. With the advent of deep learning networks, a number of architectures have been proposed recently to infer missing samples in multidimensional fields, for applications such as image super-resolution. In this article, we investigate the use of such architectures for learning the upscaling of a low resolution sampling of an isosurface to a higher resolution, with reconstruction of spatial detail and shading. We introduce a fully convolutional neural network, to learn a latent representation generating smooth, edge-aware depth and normal fields as well as ambient occlusions from a low resolution depth and normal field. By adding a frame-to-frame motion loss into the learning stage, upscaling can consider temporal variations and achieves improved frame-to-frame coherence. We assess the quality of inferred results and compare it to bi-linear and cubic upscaling. We do this for isosurfaces which were never seen during training, and investigate the improvements when the network can train on the same or similar isosurfaces. We discuss remote visualization and foveated rendering as potential applications 
650 4 |a Journal Article 
700 1 |a Chu, Mengyu  |e verfasserin  |4 aut 
700 1 |a Thuerey, Nils  |e verfasserin  |4 aut 
700 1 |a Westermann, Rudiger  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 6 vom: 28. Juni, Seite 3064-3078  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:6  |g day:28  |g month:06  |g pages:3064-3078 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2956697  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 6  |b 28  |c 06  |h 3064-3078