Bi-directional Dermoscopic Feature Learning and Multi-scale Consistent Decision Fusion for Skin Lesion Segmentation

Accurate segmentation of skin lesion from dermoscopic images is a crucial part of computer-aided diagnosis of melanoma. It is challenging due to the fact that dermoscopic images from different patients have non-negligible lesion variation, which causes difficulties in anatomical structure learning a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 28. Nov.
1. Verfasser: Wang, Xiaohong (VerfasserIn)
Weitere Verfasser: Jiang, Xudong, Ding, Henghui, Liu, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM303982519
003 DE-627
005 20240229162428.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2955297  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM303982519 
035 |a (NLM)31796409 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xiaohong  |e verfasserin  |4 aut 
245 1 0 |a Bi-directional Dermoscopic Feature Learning and Multi-scale Consistent Decision Fusion for Skin Lesion Segmentation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Accurate segmentation of skin lesion from dermoscopic images is a crucial part of computer-aided diagnosis of melanoma. It is challenging due to the fact that dermoscopic images from different patients have non-negligible lesion variation, which causes difficulties in anatomical structure learning and consistent skin lesion delineation. In this paper, we propose a novel bi-directional dermoscopic feature learning (biDFL) framework to model the complex correlation between skin lesions and their informative context. By controlling feature information passing through two complementary directions, a substantially rich and discriminative feature representation is achieved. Specifically, we place biDFL module on the top of a CNN network to enhance high-level parsing performance. Furthermore, we propose a multi-scale consistent decision fusion (mCDF) that is capable of selectively focusing on the informative decisions generated from multiple classification layers. By analysis of the consistency of the decision at each position, mCDF automatically adjusts the reliability of decisions and thus allows a more insightful skin lesion delineation. The comprehensive experimental results show the effectiveness of the proposed method on skin lesion segmentation, achieving state-of-the-art performance consistently on two publicly available dermoscopic image databases 
650 4 |a Journal Article 
700 1 |a Jiang, Xudong  |e verfasserin  |4 aut 
700 1 |a Ding, Henghui  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 28. Nov.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:28  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2955297  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 28  |c 11