Advanced Actuator Materials Powered by Biomimetic Helical Fiber Topologies

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 18 vom: 15. Mai, Seite e1904093
1. Verfasser: Spinks, Geoffrey M (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review actuators fibers helices Smart Materials
LEADER 01000naa a22002652 4500
001 NLM303956305
003 DE-627
005 20231225113934.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201904093  |2 doi 
028 5 2 |a pubmed24n1013.xml 
035 |a (DE-627)NLM303956305 
035 |a (NLM)31793710 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Spinks, Geoffrey M  |e verfasserin  |4 aut 
245 1 0 |a Advanced Actuator Materials Powered by Biomimetic Helical Fiber Topologies 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.01.2021 
500 |a Date Revised 08.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Helical constructs are ubiquitous in nature at all size domains, from molecular to macroscopic. The helical topology confers unique mechanical functions that activate certain phenomena, such as twining vines and vital cellular functions like the folding and packing of DNA into chromosomes. The understanding of active mechanical processes in plants, certain musculature in animals, and some biochemical processes in cells provides insight into the versatility of the helix. Most of these natural systems consist of helically oriented filaments embedded in a compliant matrix. In some cases, the matrix can change volume and in others the filaments can contract and the matrix is passive. In both cases, the helically arranged fibers determine the overall shape change with a great variety of responses involving length contraction/elongation, twisting, bending, and coiling. Synthetic actuator materials and systems that employ helical topologies have been described recently and demonstrate many fascinating and complex shape changes. However, significant new opportunities exist to mimic some of the most remarkable actions in nature, including the Vorticella's coiling stalk and DNA's supercoils, in the quest for superior artificial muscles 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a actuators 
650 4 |a fibers 
650 4 |a helices 
650 7 |a Smart Materials  |2 NLM 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 18 vom: 15. Mai, Seite e1904093  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:18  |g day:15  |g month:05  |g pages:e1904093 
856 4 0 |u http://dx.doi.org/10.1002/adma.201904093  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 18  |b 15  |c 05  |h e1904093