The Quest for Zero Loss : Unconventional Materials for Plasmonics

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 18 vom: 02. Mai, Seite e1904532
1. Verfasser: Cortie, Michael B (VerfasserIn)
Weitere Verfasser: Arnold, Matthew D, Keast, Vicki J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review conducting oxides figure-of-merit intermetallic compounds material selection plasmonics topological insulators
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
There has been an ongoing quest to optimize the materials used to build plasmonic devices: first the elements were investigated, then alloys and intermetallic compounds, later semiconductors were considered, and, most recently, there has been interest in using more exotic materials such as topological insulators and conducting oxides. The quality of the plasmon resonances in these materials is closely correlated with their structure and properties. In general gold and silver are the most commonly specified materials for these applications but they do have weaknesses. Here, it is shown how, in specific circumstances, the selection of certain other materials might be more useful. Candidate alternatives include Tix N, VO2 , Al, Cu, Al-doped ZnO, and Cu-Al alloys. The relative merits of these choices and the many pitfalls and subtle problems that arise are discussed, and a frank perspective on the field is provided
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201904532