Efficient simulation of thermally fluctuating biopolymers immersed in fluids on 1-micron, 1-second scales

The combination of fluid-structure interactions with stochasticity, due to thermal fluctuations, remains a challenging problem in computational fluid dynamics. We develop an efficient scheme based on the stochastic immersed boundary method, Stokeslets, and multiple timestepping. We test our method f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 386(2019) vom: 01. Juni, Seite 248-263
1. Verfasser: Liu, Kai (VerfasserIn)
Weitere Verfasser: Lowengrub, John, Allard, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Stochasticity Stokes flow actin filament fluid-structure interaction thermal fluctuation
Beschreibung
Zusammenfassung:The combination of fluid-structure interactions with stochasticity, due to thermal fluctuations, remains a challenging problem in computational fluid dynamics. We develop an efficient scheme based on the stochastic immersed boundary method, Stokeslets, and multiple timestepping. We test our method for spherical particles and filaments under purely thermal and deterministic forces and find good agreement with theoretical predictions for Brownian Motion of a particle and equilibrium thermal undulations of a semi-flexible filament. As an initial application, we simulate bio-filaments with the properties of F-actin. We specifically study the average time for two nearby parallel filaments to bundle together. Interestingly, we find a two-fold acceleration in this time between simulations that account for long-range hydrodynamics compared to those that do not, suggesting that our method will reveal significant hydrodynamic effects in biological phenomena
Beschreibung:Date Revised 22.07.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0021-9991
DOI:10.1016/j.jcp.2018.12.039