Transcriptome analysis of the molecular mechanism of Chrysanthemum flower color change under short-day photoperiods

Copyright © 2019 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 146(2020) vom: 01. Jan., Seite 315-328
1. Verfasser: Dong, Wei (VerfasserIn)
Weitere Verfasser: Li, Mangmang, Li, Zhongai, Li, Shuailei, Zhu, Yi, Hongxu, Wang, Zicheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Anthocyanin Artificial short-day treatment Chrysanthemum Full-length transcriptome sequencing Functional annotation
Beschreibung
Zusammenfassung:Copyright © 2019 Elsevier Masson SAS. All rights reserved.
Chrysanthemum [Dendranthema morifolium Tzvel.] is an ornamental plant grown under long-term artificial cultivation conditions. In production, early Chrysanthemum blossoms are often promoted by artificial short-day treatment. However, we found that the flower colour of Chrysanthemum blossoms induced by artificial short-day treatment was lighter than those induced by the natural photoperiod. To explore the intrinsic mechanism of colour fading in flowers, we performed full-length transcriptome sequencing of Chrysanthemum morifolium cv. 'Jinbeidahong' using single-molecule real-time sequencing and RNA-sequencing under natural daylight (ND) and short daylight (SD) conditions. The clustered transcriptome sequences were assigned to various databases, such as NCBI, Swiss-Prot, Gene Ontology and so on. The comparative results of digital gene expression analysis revealed that there were differentially expressed transcripts (DETs) in the four stages under ND and SD conditions. In addition, the expression patterns of anthocyanin biosynthesis structural genes were verified by quantitative real-time PCR. The major regulators of the light signalling ELONGATED HYPOCOTYL5 genes were markedly upregulated under ND conditions. The patterns of anthocyanin accumulation were consistent with the expression patterns of CHI1 and 3GT1. The results showed that the anthocyanin synthesis is tightly regulated by the photoperiod, which will be useful for molecular breeding of Chrysanthemum
Beschreibung:Date Completed 12.03.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2019.11.027