Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Metal Nanowires

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 15 vom: 01. Apr., Seite e1902684
1. Verfasser: Araki, Teppei (VerfasserIn)
Weitere Verfasser: Uemura, Takafumi, Yoshimoto, Shusuke, Takemoto, Ashuya, Noda, Yuki, Izumi, Shintaro, Sekitani, Tsuyoshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review electrophysiology flexible electronics metal nanowires transducers wireless recording Metals
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanically and visually imperceptible sensor sheets integrated with lightweight wireless loggers are employed in ultimate flexible hybrid electronics (FHE) to reduce vital stress/nervousness and monitor natural biosignal responses. The key technologies and applications for conceptual sensor system fabrication are reported, as exemplified by the use of a stretchable sensor sheet completely conforming to an individual's body surface to realize a low-noise wireless monitoring system (<1 µV) that can be attached to the human forehead for recording electroencephalograms. The above system can discriminate between Alzheimer's disease and the healthy state, thus offering a rapid in-home brain diagnosis possibility. Moreover, the introduction of metal nanowires to improve the transparency of the biocompatible sensor sheet allows one to wirelessly acquire electrocorticograms of nonhuman primates and simultaneously offers optogenetic stimulation such as toward-the-brain-machine interface under free movement. Also discussed are effective methods of improving electrical reliability, biocompatibility, miniaturization, etc., for metal nanowire based tracks and exploring the use of an organic amplifier as an important component to realize a flexible active probe with a high signal-to-noise ratio. Overall, ultimate FHE technologies are demonstrated to achieve efficient closed-loop systems for healthcare management, medical diagnostics, and preclinical studies in neuroscience and neuroengineering
Beschreibung:Date Completed 22.12.2020
Date Revised 22.12.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201902684