|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM303847212 |
003 |
DE-627 |
005 |
20231225113709.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201906221
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1012.xml
|
035 |
|
|
|a (DE-627)NLM303847212
|
035 |
|
|
|a (NLM)31782569
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jiang, Zhouyang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Tape-Casting Li0.34 La0.56 TiO3 Ceramic Electrolyte Films Permit High Energy Density of Lithium-Metal Batteries
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Ceramic oxide electrolytes are outstanding due to their excellent thermostability, wide electrochemical stable windows, superior Li-ion conductivity, and high elastic modulus compared to other electrolytes. To achieve high energy density, all-solid-state batteries require thin solid-state electrolytes that are dozens of micrometers thick due to the high density of ceramic electrolytes. Perovskite-type Li0.34 La0.56 TiO3 (LLTO) freestanding ceramic electrolyte film with a thickness of 25 µm is prepared by tape-casting. Compared to a thick electrolyte (>200 µm) obtained by cold-pressing, the total Li ionic conductivity of this LLTO film improves from 9.6 × 10-6 to 2.0 × 10-5 S cm-1 . In addition, the LLTO film with a thickness of 25 µm exhibits a flexural strength of 264 MPa. An all-solid-state Li-metal battery assembled with a 41 µm thick LLTO exhibits an initial discharge capacity of 145 mAh g-1 and a high capacity retention ratio of 86.2% after 50 cycles. Reducing the thickness of oxide ceramic electrolytes is crucial to reduce the resistance of electrolytes and improve the energy density of Li-metal batteries
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Li-metal batteries
|
650 |
|
4 |
|a oxide ceramics
|
650 |
|
4 |
|a solid-state electrolytes
|
650 |
|
4 |
|a tape casting
|
650 |
|
4 |
|a ultrathin films
|
700 |
1 |
|
|a Wang, Suqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Xinzhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Wenlong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Xiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Xinchao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Qingyue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Haihui
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 6 vom: 03. Feb., Seite e1906221
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:6
|g day:03
|g month:02
|g pages:e1906221
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201906221
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 6
|b 03
|c 02
|h e1906221
|