Plasticity and light sensitivity of leaf hydraulic conductance to fast changes in irradiance in common hazel (Corylus avellana L.)

Copyright © 2019 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 290(2020) vom: 03. Jan., Seite 110299
1. Verfasser: Õunapuu-Pikas, Eele (VerfasserIn)
Weitere Verfasser: Sellin, Arne
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Acclimation Fluctuating light Leaf hydraulic conductance Light sensitivity Plant water relations Plasticity
Beschreibung
Zusammenfassung:Copyright © 2019 Elsevier B.V. All rights reserved.
Forest understory species have to acclimatize to highly heterogeneous light conditions inside forest canopies in order to utilize available resources efficiently. Light sensitivity and response speed of hydraulic conductance (KL) of common hazel (Corylus avellana L.) to fast changes in irradiance was studied in leaves from three different growth light conditions-sun-exposed, moderate shade, and deep shade. The KL of sun-exposed leaves was approximately 3-fold higher when compared to deep-shade leaves, indicating a strong dependence of leaf hydraulic capacity on light conditions. The KL of sun-exposed leaves increased by a factor of nearly four from minimal values recorded in darkness to maximal values in high light compared to deep-shade leaves. Reaction speed of KL to reach maximum values in response to light was nearly five times higher for sun-exposed vs deep-shade leaves. Plasticity indices of KL for sun-exposed and deep-shade leaves were 0.44 and 0.27, respectively. Higher light sensitivity enables a faster and more plastic response of KL to variable light conditions in sun leaves and enhances the ability of plants to maximize resource utilization under more beneficial environmental conditions
Beschreibung:Date Completed 23.03.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2259
DOI:10.1016/j.plantsci.2019.110299