Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes
© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1979. - 226(2020), 1 vom: 28. Apr., Seite 232-243 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't community assembly ecological processes fungal ecology fungal functional guilds soil fertility Soil |
Zusammenfassung: | © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. In the processes controlling ecosystem fertility, fungi are increasingly acknowledged as key drivers. However, our understanding of the rules behind fungal community assembly regarding the effect of soil fertility level remains limited. Using soil samples from typical tea plantations spanning c. 2167 km north-east to south-west across China, we investigated the assemblage complexity and assembly processes of 140 fungal communities along a soil fertility gradient. The community dissimilarities of total fungi and fungal functional guilds increased with increasing soil fertility index dissimilarity. The symbiotrophs were more sensitive to variations in soil fertility compared with pathotrophs and saprotrophs. Fungal networks were larger and showed higher connectivity as well as greater potential for inter-module connection in more fertile soils. Environmental factors had a slightly greater influence on fungal community composition than spatial factors. Species abundance fitted the Zipf-Mandelbrot distribution (niche-based mechanisms), which provided evidence for deterministic-based processes. Overall, the soil fungal communities in tea plantations responded in a deterministic manner to soil fertility, with high fertility correlated with complex fungal community assemblages. This study provides new insights that might contribute to predictions of fungal community complexity |
---|---|
Beschreibung: | Date Completed 26.04.2021 Date Revised 26.04.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.16345 |