The Structure Transfer Machine Theory and Applications

Representation learning is a fundamental but challenging problem, especially when the distribution of data is unknown. In this paper, we propose a new representation learning method, named Structure Transfer Machine (STM), which enables feature learning process to converge at the representation expe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 25. Nov.
1. Verfasser: Zhang, Baochang (VerfasserIn)
Weitere Verfasser: Yang, Wankou, Wang, Ze, Zhuo, Lian, Han, Jungong, Zhen, Xiantong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM303677120
003 DE-627
005 20250226080252.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2954178  |2 doi 
028 5 2 |a pubmed25n1012.xml 
035 |a (DE-627)NLM303677120 
035 |a (NLM)31765313 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Baochang  |e verfasserin  |4 aut 
245 1 4 |a The Structure Transfer Machine Theory and Applications 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Representation learning is a fundamental but challenging problem, especially when the distribution of data is unknown. In this paper, we propose a new representation learning method, named Structure Transfer Machine (STM), which enables feature learning process to converge at the representation expectation in a probabilistic way. We theoretically show that such an expected value of the representation (mean) is achievable if the manifold structure can be transferred from the data space to the feature space. The resulting structure regularization term, named manifold loss, is incorporated into the loss function of the typical deep learning pipeline. The STM architecture is constructed to enforce the learned deep representation to satisfy the intrinsic manifold structure from the data, which results in robust features that suit various application scenarios, such as digit recognition, image classification and object tracking. Compared with state-of-the-art CNN architectures, we achieve better results on several commonly used public benchmarks 
650 4 |a Journal Article 
700 1 |a Yang, Wankou  |e verfasserin  |4 aut 
700 1 |a Wang, Ze  |e verfasserin  |4 aut 
700 1 |a Zhuo, Lian  |e verfasserin  |4 aut 
700 1 |a Han, Jungong  |e verfasserin  |4 aut 
700 1 |a Zhen, Xiantong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 25. Nov.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2019  |g day:25  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2954178  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 25  |c 11