Martini Force Field for Protonated Polyethyleneimine
© 2019 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 41(2020), 4 vom: 05. Feb., Seite 349-361 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't cationic polymers coarse-grained force fields molecular dynamics polyethyleneimine |
Zusammenfassung: | © 2019 Wiley Periodicals, Inc. Polyethyleneimine (PEI), one of the most widely used nonviral gene carriers, was investigated in the presented work at coarse-grained (CG) level. The main focus was on elaborating a realistic CG force field (FF) aimed to reproduce dynamic structural features of protonated PEI chains and, furthermore, to enable massive simulations of DNA-PEI complex formation and condensation. We parametrized CG Martini FF models for PEI in polarizable and nonpolarizable water by applying Boltzmann inversion techniques to all-atom (AA) probability distributions for distances, angles, and dihedrals of entire monomers. The fine-tuning of the FFs was achieved by fitting simulated CG gyration radii and end-to-end distances to their AA counterparts. The developed Martini FF models are shown to be well suited for realistic large-scale simulations of size/protonation-dependent behavior of solvated PEI chains, either individually or as part of DNA-PEI systems. © 2019 Wiley Periodicals, Inc |
---|---|
Beschreibung: | Date Completed 17.08.2020 Date Revised 17.08.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.26110 |