In Situ Transmission Electron Microscope Liquid Cell 3D Profile Reconstruction and Analysis of Nanoscale Liquid Water Contact Line Movements

Static nanodroplets and dynamic contact line (CL) movements were visualized by an in situ transmission electron microscope (TEM) liquid cell technique at nanometer spatial resolution. Crawling and sliding movements of nanoscale CL were observed. The crawling happened at a capillary number (Ca) range...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 51 vom: 24. Dez., Seite 16712-16717
1. Verfasser: Chen, Guanglei (VerfasserIn)
Weitere Verfasser: Bau, Haim H, Li, Calvin H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Static nanodroplets and dynamic contact line (CL) movements were visualized by an in situ transmission electron microscope (TEM) liquid cell technique at nanometer spatial resolution. Crawling and sliding movements of nanoscale CL were observed. The crawling happened at a capillary number (Ca) range of ∼10-9 to ∼10-8, and the sliding happened at a Ca range of ∼10-8 to ∼10-7. Three dimensional (3D) image construction had been employed to study static and dynamic contact angles (CAs) at nanoscale. CA hysteresis at nanoscale was observed in the sliding but not in the crawling. The energies associated with sliding were analyzed to investigate the CA hysteresis. An empirical model of the relationship between nanoscale CAs and Ca was developed. Both the experimental observation and the empirical analysis suggested that the competition among substrate defect, CL elastic, and molecular activation energies dictated different CL movements at nanoscale
Beschreibung:Date Completed 29.06.2020
Date Revised 29.06.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01428