Bioinspired Superwettable Covalent Organic Framework Nanofibrous Composite Membrane with a Spindle-Knotted Structure for Highly Efficient Oil/Water Emulsion Separation

Covalent organic frameworks (COFs) have attracted broad interest in a number of fields including gas access, catalysis, and ionic adsorption. However, owing to the low stability in water, the application of COFs in the field of oil/water separation is extensively impeded. In this paper, we synthesiz...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 50 vom: 17. Dez., Seite 16545-16554
1. Verfasser: Zhang, Zongxuan (VerfasserIn)
Weitere Verfasser: Han, Na, Tan, Linli, Qian, Yongqiang, Zhang, Haoran, Wang, Menglu, Li, Wei, Cui, Zhenyu, Zhang, Xingxiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Covalent organic frameworks (COFs) have attracted broad interest in a number of fields including gas access, catalysis, and ionic adsorption. However, owing to the low stability in water, the application of COFs in the field of oil/water separation is extensively impeded. In this paper, we synthesized COF-DhaTab/polyacrylonitrile (PAN) nanofibrous composite membranes with a bioinspired spindle-knotted structure via a facile blending electrospinning method. The COF-DhaTab/PAN composite membrane shows prewetting-induced superoleophobicity under water and superhydrophobicity under oil. It possesses outstanding rejection ratio (>99.9%), excellent antifouling performance, and ultrahigh oil/water mixture flux up to 4229.29 L/m2h even though driven only by gravity. Specifically, an extraordinary oil contact angle under water (152.3°) and a satisfied water contact angle under oil (153.7°) were offered by the composite membrane. These are mainly attributed to the spindle-knotted structures induced by COFs. To the best of our knowledge, the application of COF/PAN composite membrane in the field of oil/water separation has never been reported. It is an innovative approach for oily wastewater treatment and oil purification
Beschreibung:Date Completed 30.06.2020
Date Revised 30.06.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b02661