A Multi-domain and Multi-modal Representation Disentangler for Cross-Domain Image Manipulation and Classification

Learning interpretable data representation has been an active research topic in deep learning and computer vision. While representation disentanglement is an effective technique for addressing this task, existing works cannot easily handle the problems in which manipulating and recognizing data acro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 15. Nov.
1. Verfasser: Yang, Fu-En (VerfasserIn)
Weitere Verfasser: Chang, Jing-Cheng, Tsai, Chung-Chi, Wang, Yu-Chiang Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM303539097
003 DE-627
005 20240229162418.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2952707  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM303539097 
035 |a (NLM)31751274 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Fu-En  |e verfasserin  |4 aut 
245 1 2 |a A Multi-domain and Multi-modal Representation Disentangler for Cross-Domain Image Manipulation and Classification 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Learning interpretable data representation has been an active research topic in deep learning and computer vision. While representation disentanglement is an effective technique for addressing this task, existing works cannot easily handle the problems in which manipulating and recognizing data across multiple domains are desirable. In this paper, we present a unified network architecture of Multi-domain and Multi-modal Representation Disentangler (M2RD), with the goal of learning domain-invariant content representation with the associated domain-specific representation observed. By advancing adversarial learning and disentanglement techniques, the proposed model is able to perform continuous image manipulation across data domains with multiple modalities. More importantly, the resulting domain-invariant feature representation can be applied for unsupervised domain adaptation. Finally, our quantitative and qualitative results would confirm the effectiveness and robustness of the proposed model over state-of-the-art methods on the above tasks 
650 4 |a Journal Article 
700 1 |a Chang, Jing-Cheng  |e verfasserin  |4 aut 
700 1 |a Tsai, Chung-Chi  |e verfasserin  |4 aut 
700 1 |a Wang, Yu-Chiang Frank  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 15. Nov.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:15  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2952707  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 15  |c 11