Semi-Supervised Image Dehazing

We present an effective semi-supervised learning algorithm for single image dehazing. The proposed algorithm applies a deep Convolutional Neural Network (CNN) containing a supervised learning branch and an unsupervised learning branch. In the supervised branch, the deep neural network is constrained...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 15. Nov.
1. Verfasser: Li, Lerenhan (VerfasserIn)
Weitere Verfasser: Dong, Yunlong, Ren, Wenqi, Pan, Jinshan, Gao, Changxin, Sang, Nong, Yang, Ming-Hsuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM303539070
003 DE-627
005 20240229162418.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2952690  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM303539070 
035 |a (NLM)31751272 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Lerenhan  |e verfasserin  |4 aut 
245 1 0 |a Semi-Supervised Image Dehazing 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We present an effective semi-supervised learning algorithm for single image dehazing. The proposed algorithm applies a deep Convolutional Neural Network (CNN) containing a supervised learning branch and an unsupervised learning branch. In the supervised branch, the deep neural network is constrained by the supervised loss functions, which are mean squared, perceptual, and adversarial losses. In the unsupervised branch, we exploit the properties of clean images via sparsity of dark channel and gradient priors to constrain the network. We train the proposed network on both the synthetic data and real-world images in an end-to-end manner. Our analysis shows that the proposed semi-supervised learning algorithm is not limited to synthetic training datasets and can be generalized well to real-world images. Extensive experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art single image dehazing algorithms on both benchmark datasets and real-world images 
650 4 |a Journal Article 
700 1 |a Dong, Yunlong  |e verfasserin  |4 aut 
700 1 |a Ren, Wenqi  |e verfasserin  |4 aut 
700 1 |a Pan, Jinshan  |e verfasserin  |4 aut 
700 1 |a Gao, Changxin  |e verfasserin  |4 aut 
700 1 |a Sang, Nong  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 15. Nov.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:15  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2952690  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 15  |c 11