CMed : Crowd Analytics for Medical Imaging Data

We present a visual analytics framework, CMed, for exploring medical image data annotations acquired from crowdsourcing. CMed can be used to visualize, classify, and filter crowdsourced clinical data based on a number of different metrics such as detection rate, logged events, and clustering of the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 6 vom: 20. Juni, Seite 2869-2880
1. Verfasser: Park, Ji Hwan (VerfasserIn)
Weitere Verfasser: Nadeem, Saad, Boorboor, Saeed, Marino, Joseph, Kaufman, Arie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM303538775
003 DE-627
005 20231225113032.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2953026  |2 doi 
028 5 2 |a pubmed24n1011.xml 
035 |a (DE-627)NLM303538775 
035 |a (NLM)31751242 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, Ji Hwan  |e verfasserin  |4 aut 
245 1 0 |a CMed  |b Crowd Analytics for Medical Imaging Data 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.01.2022 
500 |a Date Revised 11.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We present a visual analytics framework, CMed, for exploring medical image data annotations acquired from crowdsourcing. CMed can be used to visualize, classify, and filter crowdsourced clinical data based on a number of different metrics such as detection rate, logged events, and clustering of the annotations. CMed provides several interactive linked visualization components to analyze the crowd annotation results for a particular video and the associated workers. Additionally, all results of an individual worker can be inspected using multiple linked views in our CMed framework. We allow a crowdsourcing application analyst to observe patterns and gather insights into the crowdsourced medical data, helping him/her design future crowdsourcing applications for optimal output from the workers. We demonstrate the efficacy of our framework with two medical crowdsourcing studies: polyp detection in virtual colonoscopy videos and lung nodule detection in CT thin-slab maximum intensity projection videos. We also provide experts' feedback to show the effectiveness of our framework. Lastly, we share the lessons we learned from our framework with suggestions for integrating our framework into a clinical workflow 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Nadeem, Saad  |e verfasserin  |4 aut 
700 1 |a Boorboor, Saeed  |e verfasserin  |4 aut 
700 1 |a Marino, Joseph  |e verfasserin  |4 aut 
700 1 |a Kaufman, Arie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 6 vom: 20. Juni, Seite 2869-2880  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:6  |g day:20  |g month:06  |g pages:2869-2880 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2953026  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 6  |b 20  |c 06  |h 2869-2880