Image-Based 3D Object Reconstruction : State-of-the-Art and Trends in the Deep Learning Era

3D reconstruction is a longstanding ill-posed problem, which has been explored for decades by the computer vision, computer graphics, and machine learning communities. Since 2015, image-based 3D reconstruction using convolutional neural networks (CNN) has attracted increasing interest and demonstrat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 5 vom: 21. Mai, Seite 1578-1604
1. Verfasser: Han, Xian-Feng (VerfasserIn)
Weitere Verfasser: Laga, Hamid, Bennamoun, Mohammed
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM303538643
003 DE-627
005 20231225113032.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2954885  |2 doi 
028 5 2 |a pubmed24n1011.xml 
035 |a (DE-627)NLM303538643 
035 |a (NLM)31751229 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Xian-Feng  |e verfasserin  |4 aut 
245 1 0 |a Image-Based 3D Object Reconstruction  |b State-of-the-Art and Trends in the Deep Learning Era 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 3D reconstruction is a longstanding ill-posed problem, which has been explored for decades by the computer vision, computer graphics, and machine learning communities. Since 2015, image-based 3D reconstruction using convolutional neural networks (CNN) has attracted increasing interest and demonstrated an impressive performance. Given this new era of rapid evolution, this article provides a comprehensive survey of the recent developments in this field. We focus on the works which use deep learning techniques to estimate the 3D shape of generic objects either from a single or multiple RGB images. We organize the literature based on the shape representations, the network architectures, and the training mechanisms they use. While this survey is intended for methods which reconstruct generic objects, we also review some of the recent works which focus on specific object classes such as human body shapes and faces. We provide an analysis and comparison of the performance of some key papers, summarize some of the open problems in this field, and discuss promising directions for future research 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Laga, Hamid  |e verfasserin  |4 aut 
700 1 |a Bennamoun, Mohammed  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 5 vom: 21. Mai, Seite 1578-1604  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:5  |g day:21  |g month:05  |g pages:1578-1604 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2954885  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 5  |b 21  |c 05  |h 1578-1604