Using Statistical Measures and Machine Learning for Graph Reduction to Solve Maximum Weight Clique Problems

In this article, we investigate problem reduction techniques using stochastic sampling and machine learning to tackle large-scale optimization problems. These techniques heuristically remove decision variables from the problem instance, that are not expected to be part of an optimal solution. First...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 5 vom: 21. Mai, Seite 1746-1760
1. Verfasser: Sun, Yuan (VerfasserIn)
Weitere Verfasser: Li, Xiaodong, Ernst, Andreas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM303538627
003 DE-627
005 20231225113032.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2954827  |2 doi 
028 5 2 |a pubmed24n1011.xml 
035 |a (DE-627)NLM303538627 
035 |a (NLM)31751227 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Yuan  |e verfasserin  |4 aut 
245 1 0 |a Using Statistical Measures and Machine Learning for Graph Reduction to Solve Maximum Weight Clique Problems 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this article, we investigate problem reduction techniques using stochastic sampling and machine learning to tackle large-scale optimization problems. These techniques heuristically remove decision variables from the problem instance, that are not expected to be part of an optimal solution. First we investigate the use of statistical measures computed from stochastic sampling of feasible solutions compared with features computed directly from the instance data. Two measures are particularly useful for this: 1) a ranking-based measure, favoring decision variables that frequently appear in high-quality solutions; and 2) a correlation-based measure, favoring decision variables that are highly correlated with the objective values. To take this further we develop a machine learning approach, called Machine Learning for Problem Reduction (MLPR), that trains a supervised learning model on easy problem instances for which the optimal solution is known. This gives us a combination of features enabling us to better predict the decision variables that belong to the optimal solution for a given hard problem. We evaluate our approaches using a typical optimization problem on graphs-the maximum weight clique problem. The experimental results show our problem reduction techniques are very effective and can be used to boost the performance of existing solution methods 
650 4 |a Journal Article 
700 1 |a Li, Xiaodong  |e verfasserin  |4 aut 
700 1 |a Ernst, Andreas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 5 vom: 21. Mai, Seite 1746-1760  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:5  |g day:21  |g month:05  |g pages:1746-1760 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2954827  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 5  |b 21  |c 05  |h 1746-1760