Construction of MnO2 Artificial Leaf with Atomic Thickness as Highly Stable Battery Anodes

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 1 vom: 21. Jan., Seite e1906582
Auteur principal: Jia, Binbin (Auteur)
Autres auteurs: Chen, Wenxing, Luo, Jun, Yang, Zhao, Li, Lidong, Guo, Lin
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article 2D materials amorphous/crystalline structure biomimetic leaves lithium ion batteries
Description
Résumé:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The leaf-like structure is a classic and robust structure and its unique vein support can reduce structural instability. However, biomimetic leaf structures on the atomic scale are rarely reported due to the difficulty in achieving a stable vein-like support in a mesophyll-like substrate. A breathable 2D MnO2 artificial leaf is first reported with atomic thickness by using a simple and mild one-step wet chemical method. This homogeneous ultrathin leaf-like structure comprises of vein-like crystalline skeleton as support and amorphous microporous mesophyll-like nanosheet as substrate. When used as an anode material for lithium ion batteries, it first solves the irreversible capacity loss and poor cycling issue of pure MnO2 , which delivers high capacity of 1210 mAh g-1 at 0.1 A g-1 and extremely stable cycle life over 2500 cycles at 1.0 A g-1 . It exhibits the most outstanding cycle life of pure MnO2 and even comparable to the most MnO2 -based composite electrode materials. This biomimetic design provides important guidelines for precise control of 2D artificial systems and gives a new idea for solving poor electrochemical stability of pure metal oxide electrode materials
Description:Date Completed 07.01.2020
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201906582