Interfacial Engineering of W2 N/WC Heterostructures Derived from Solid-State Synthesis : A Highly Efficient Trifunctional Electrocatalyst for ORR, OER, and HER

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 7 vom: 06. Feb., Seite e1905679
Auteur principal: Diao, Jinxiang (Auteur)
Autres auteurs: Qiu, Yu, Liu, Shuangquan, Wang, Weitao, Chen, Kai, Li, Hailong, Yuan, Wenyu, Qu, Yunteng, Guo, Xiaohui
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article W2N/WC heterostructures Zn-air batteries density functional theory heterostructures water splitting
Description
Résumé:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
To meet the practical demand of overall water splitting and regenerative metal-air batteries, highly efficient, low-cost, and durable electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are required to displace noble metal catalysts. In this work, a facile solid-state synthesis strategy is developed to construct the interfacial engineering of W2 N/WC heterostructures, in which abundant interfaces are formed. Under high temperature (800 °C), volatile CNx species from dicyanodiamide are trapped by WO3 nanorods, followed by simultaneous nitridation and carbonization, to form W2 N/WC heterostructure catalysts. The resultant W2 N/WC heterostructure catalysts exhibit an efficient and stable electrocatalytic performance toward the ORR, OER, and HER, including a half-wave potential of 0.81 V (ORR) and a low overpotential at 10 mA cm-2 for the OER (320 mV) and HER (148.5 mV). Furthermore, a W2 N/WC-based Zn-air battery shows outstanding high power density (172 mW cm-2 ). Density functional theory and X-ray absorption fine structure analysis computations reveal that W2 N/WC interfaces synergistically facilitate transport and separation of charge, thus accelerating the electrochemical ORR, OER, and HER. This work paves a novel avenue for constructing efficient and low-cost electrocatalysts for electrochemical energy devices
Description:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201905679