Aggregation kinetics and mechanisms of silver nanoparticles in simulated pollution water under UV light irradiation
© 2019 Water Environment Federation.
Veröffentlicht in: | Water environment research : a research publication of the Water Environment Federation. - 1998. - 92(2020), 6 vom: 15. Juni, Seite 840-849 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Water environment research : a research publication of the Water Environment Federation |
Schlagworte: | Journal Article UV irradiation aggregation eDLVO silver nanoparticle simulated pollution water Silver 3M4G523W1G Povidone FZ989GH94E |
Zusammenfassung: | © 2019 Water Environment Federation. This paper investigated the effect mechanism of complex components (fulvic acid [FA], sodium dodecylbenzene sulfonate [SDBS], and sodium nitrate [NaNO3 ]) on the aggregation kinetics of polyvinylpyrrolidone-modified silver nanoparticles (PVP-AgNPs) under UV irradiation. The results showed that FA and NaNO3 alone did not cause aggregation due to the high steric hindrance and/or electrostatic repulsive forces. In high concentration of SDBS solution (20-50 mM), the stability of PVP-AgNPs was reduced by adsorbing SDBS on nanoparticle surface and replacing their PVP coatings. A mixed system of two pollutants had a synergistic effect on PVP-AgNPs aggregation. In the mixed system of SDBS and FA, the interaction of SDBS and PVP-AgNPs dominated the aggregation of PVP-AgNPs. NaNO3 significantly improved the aggregation rate of PVP-AgNPs in SDBS solution due to the charge neutralization effect of electrolyte. In 20 mg/L FA solution, the aggregation rate increased slightly with increasing NaNO3 concentration from 50 to 200 mM due to the charge neutralization effect, while the hydrodynamic diameters of PVP-AgNPs increased linearly and rapidly to micrometer size because the spatial conformation of adsorbed FA became compact in high-salinity solution. The calculation results of eDLVO theory were basically consistent with most of the experimental results. PRACTITIONER POINTS: PVP-AgNPs was uniformly dispersed in NaNO3 or FA solution under UV irradiation. PVP-AgNPs formed aggregates in SDBS solutions under UV irradiation. A system with two mixed pollutants had a synergistic effect on promoting aggregation of PVP-AgNPs. eDLVO theory could explain the aggregation results in different chemical conditions except in NaNO3 solution |
---|---|
Beschreibung: | Date Completed 22.05.2020 Date Revised 22.05.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1554-7531 |
DOI: | 10.1002/wer.1276 |