Mapping data between sample and detector conjugated spaces in Bragg coherent diffraction imaging

Bragg coherent X-ray diffraction imaging (BCDI) is a non-destructive, lensless method for 3D-resolved, nanoscale strain imaging in micro-crystals. A challenge, particularly for new users of the technique, is accurate mapping of experimental data, collected in the detector reciprocal space coordinate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 26(2019), Pt 6 vom: 01. Nov., Seite 2055-2063
1. Verfasser: Yang, David (VerfasserIn)
Weitere Verfasser: Phillips, Nicholas W, Hofmann, Felix
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article Bragg coherent X-ray diffraction imaging crystal reflection detector conjugated space simulation space transformation
LEADER 01000caa a22002652c 4500
001 NLM303252774
003 DE-627
005 20250226064752.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1107/S160057751901302X  |2 doi 
028 5 2 |a pubmed25n1010.xml 
035 |a (DE-627)NLM303252774 
035 |a (NLM)31721751 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, David  |e verfasserin  |4 aut 
245 1 0 |a Mapping data between sample and detector conjugated spaces in Bragg coherent diffraction imaging 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.11.2019 
500 |a Date Revised 18.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Bragg coherent X-ray diffraction imaging (BCDI) is a non-destructive, lensless method for 3D-resolved, nanoscale strain imaging in micro-crystals. A challenge, particularly for new users of the technique, is accurate mapping of experimental data, collected in the detector reciprocal space coordinate frame, to more convenient orthogonal coordinates, e.g. attached to the sample. This is particularly the case since different coordinate conventions are used at every BCDI beamline. The reconstruction algorithms and mapping scripts composed for individual beamlines are not readily interchangeable. To overcome this, a BCDI experiment simulation with a plugin script that converts all beamline angles to a universal, right-handed coordinate frame is introduced, making it possible to condense any beamline geometry into three rotation matrices. The simulation translates a user-specified 3D complex object to different BCDI-related coordinate frames. It also allows the generation of synthetic coherent diffraction data that can be inserted into any BCDI reconstruction algorithm to reconstruct the original user-specified object. Scripts are provided to map from sample space to detector conjugated space, detector conjugated space to sample space and detector conjugated space to detector conjugated space for a different reflection. This provides the reader with the basis for a flexible simulation tool kit that is easily adapted to different geometries. It is anticipated that this will find use in the generation of tailor-made supports for phasing of challenging data and exploration of novel geometries or data collection modalities 
650 4 |a Journal Article 
650 4 |a Bragg coherent X-ray diffraction imaging 
650 4 |a crystal reflection 
650 4 |a detector conjugated space 
650 4 |a simulation 
650 4 |a space transformation 
700 1 |a Phillips, Nicholas W  |e verfasserin  |4 aut 
700 1 |a Hofmann, Felix  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 26(2019), Pt 6 vom: 01. Nov., Seite 2055-2063  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnas 
773 1 8 |g volume:26  |g year:2019  |g number:Pt 6  |g day:01  |g month:11  |g pages:2055-2063 
856 4 0 |u http://dx.doi.org/10.1107/S160057751901302X  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 26  |j 2019  |e Pt 6  |b 01  |c 11  |h 2055-2063