|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM303251131 |
003 |
DE-627 |
005 |
20231225112430.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.9b02623
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1010.xml
|
035 |
|
|
|a (DE-627)NLM303251131
|
035 |
|
|
|a (NLM)31721586
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Xuemei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Microflower-Decorated Superhydrophobic Copper Surface for Dry Condensation
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 04.03.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The ability to keep surfaces dry is highly desired in many industrial settings, such as condensation, anti-icing, and antifogging. During those applications, phase-change processes are normally involved, and thus the superior superhydrophobic state manifested under ambient conditions is susceptible to collapse under these extreme conditions. Although the design of refined textures offers potential to maintain dry surfaces, the large-scale fabrication of these surfaces is tedious and costly. Herein, we report a facile one-step solution-immersion technique that allows for the attainment of sustained and dry condensation surfaces. Careful optimization of the synthesis procedure and surface morphology, especially the density of microflower structures, the wetting states and departure dynamics of condensate droplets can be mediated, leading to the overall enhanced performances. Our results not only provide important insight for the design of surfaces that promote efficient droplet departure but also promise a large-scale fabrication approach to increase heat transfer in many industrial applications
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Li, Qiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hou, Kongyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xiaoyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zuankai
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 35(2019), 49 vom: 10. Dez., Seite 16275-16280
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2019
|g number:49
|g day:10
|g month:12
|g pages:16275-16280
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.9b02623
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2019
|e 49
|b 10
|c 12
|h 16275-16280
|