|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM303251123 |
003 |
DE-627 |
005 |
20231225112430.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.9b01254
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1010.xml
|
035 |
|
|
|a (DE-627)NLM303251123
|
035 |
|
|
|a (NLM)31721585
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yates, Nicholas D
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Aldehyde-Mediated Protein-to-Surface Tethering via Controlled Diazonium Electrode Functionalization Using Protected Hydroxylamines
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 26.08.2020
|
500 |
|
|
|a Date Revised 26.08.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We report a diazonium electro-grafting method for the covalent modification of conducting surfaces with aldehyde-reactive hydroxylamine functionalities that facilitate the wiring of redox-active (bio)molecules to electrode surfaces. Hydroxylamine near-monolayer formation is achieved via a phthalimide-protection and hydrazine-deprotection strategy that overcomes the multilayer formation that typically complicates diazonium surface modification. This surface modification strategy is characterized using electrochemistry (electrochemical impedance spectroscopy and cyclic voltammetry), X-ray photoelectron spectroscopy, and quartz crystal microbalance with dissipation monitoring. Thus-modified glassy carbon, boron-doped diamond, and gold surfaces are all shown to ligate to small molecule aldehydes, yielding surface coverages of 150-170, 40, and 100 pmol cm-2, respectively. Bioconjugation is demonstrated via the coupling of a dilute (50 μM) solution of periodate-oxidized horseradish peroxidase enzyme to a functionalized gold surface under biocompatible conditions (H2O solvent, pH 4.5, 25 °C)
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Dowsett, Mark R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bentley, Phillip
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dickenson-Fogg, Jack A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pratt, Andrew
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Blanford, Christopher F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fascione, Martin A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Parkin, Alison
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 36(2020), 20 vom: 26. Mai, Seite 5654-5664
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2020
|g number:20
|g day:26
|g month:05
|g pages:5654-5664
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.9b01254
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2020
|e 20
|b 26
|c 05
|h 5654-5664
|