Rice busk biochar treatment to cobalt-polluted fluvo-aquic soil : speciation and enzyme activities

Rice busk biochar was mixed with cobalt (Co)-polluted soil to examine the efficacy of biochar for Co immobilization and detoxification in fluvo-aquic soil. The Co speciation (modified BCR sequential extraction), fluorescein diacetate (FDA) hydrolysis and soil enzyme activities were investigated. In...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 28(2019), 10 vom: 13. Dez., Seite 1220-1231
1. Verfasser: Liu, Borui (VerfasserIn)
Weitere Verfasser: Huang, Qing, Su, Yuefeng, Sun, Liuye, Wu, Tong, Wang, Guange, Kelly, Ryan M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article BCR sequential extraction Biochar Cobalt Ecotoxicological effects Enzyme Soil pollution Soil Soil Pollutants biochar mehr... Charcoal 16291-96-6 3G0H8C9362
Beschreibung
Zusammenfassung:Rice busk biochar was mixed with cobalt (Co)-polluted soil to examine the efficacy of biochar for Co immobilization and detoxification in fluvo-aquic soil. The Co speciation (modified BCR sequential extraction), fluorescein diacetate (FDA) hydrolysis and soil enzyme activities were investigated. In soil, the Co ions (acid-soluble fraction) could be uptake by biochar due to the microporous structure on the surface, as well as the oxygen-containing functional groups and conjugated structure in the molecular structure. Therefore, when the biochar concentration was lower than the optimum concentration (~6 g·kg-1), there was transformation of Co from the acid-soluble fraction to the oxidizable fraction, resulting in lower environmental risk. However, if the biochar concentration continued increasing, the distribution coefficient of Co in the acid-soluble fraction increased (P < 0.05). The biochar could also reduce the toxicity of Co, resulting in the negative correlations between soil enzyme activities (FDA hydrolysis, urease and alkaline phosphatases) and Co in the acid-soluble fraction (r = -0.816, -0.928 and -0.908, respectively, P < 0.01). When the biochar concentration ranged from 5.83 to 6.76 g·kg-1, the efficacy for Co immobilization and detoxification reached the maxima. To conclude, in fluvo-aquic soil, rice busk biochar is an effective amendment for immobilizing Co ions and reducing the toxicity of Co. The biochar concentration in soil should range from 5.83 to 6.76 g·kg-1 to reach the optimum efficacy
Beschreibung:Date Completed 06.03.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-019-02134-x