Performance of Range Separated Density Functional in Solvent Continuum : Tuning Long-range Hartree-Fock Exchange for Improved Orbital Energies

© 2019 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 41(2020), 4 vom: 05. Feb., Seite 295-304
1. Verfasser: Boruah, Abhijit (VerfasserIn)
Weitere Verfasser: Borpuzari, Manash Protim, Kar, Rahul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article DFT OE RE long-range HF exchange tuned LC functionals
Beschreibung
Zusammenfassung:© 2019 Wiley Periodicals, Inc.
Performance of the density functionals mainly depends on the proper approximation of exchange-correlation functionals. Modification of various parameters of such functionals, according to the demand of the system, has brought their accuracy level to a new height. Recent reports highlight that Long-range Corrected (LC) functionals are not encouraging in reproducing orbital energies in solvent. Therefore, in this article, we have proposed a tuning scheme for the LC functional for improved orbital energies. In this scheme, the optimized long-range HF exchange and the dielectric constant of the medium are included to modify the form of functionals. The proposed tuning is tested over a set of 103 molecules from IP131 database and fifteen solvent dielectrics. The tuned range separated functionals reproduce orbital eigenvalues in solvent continuum with good accuracy. More importantly, there is a consistency in the error for the tuned functional across the solvent media. © 2019 Wiley Periodicals, Inc
Beschreibung:Date Revised 04.03.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.26101