iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera)

Copyright © 2019 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 145(2019) vom: 01. Dez., Seite 216-226
1. Verfasser: Li, Zhou (VerfasserIn)
Weitere Verfasser: Huang, Ting, Tang, Mingyan, Cheng, Binzhen, Peng, Yan, Zhang, Xinquan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Cell elongation Dehydrins Energy metabolism Fatty acid desaturation Metabolic pathway Wax biosynthesis Plant Proteins gamma-Aminobutyric Acid 56-12-2
LEADER 01000caa a22002652c 4500
001 NLM303110309
003 DE-627
005 20250226062420.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2019.10.018  |2 doi 
028 5 2 |a pubmed25n1010.xml 
035 |a (DE-627)NLM303110309 
035 |a (NLM)31707249 
035 |a (PII)S0981-9428(19)30419-X 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zhou  |e verfasserin  |4 aut 
245 1 0 |a iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera) 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.04.2020 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2019 Elsevier Masson SAS. All rights reserved. 
520 |a γ-Aminobutyric acid (GABA), a non-proteinaceous amino acid, modulates plant growth and stress tolerance. However, the potential role of GABA in regulating key metabolic pathways and stress-defensive proteins against drought in plants has never been explored. Creeping bentgrass (Agrostis stolonifera) plants were pretreated with or without GABA and then subjected to water stress for 8 days in controlled growth chambers (23/19 °C, day/night). Physiological analysis showed that elevated endogenous GABA level via exogenous GABA application significantly mitigated water stress damage to creeping bentgrass, as manifested by increased leaf relative water content, water use efficiency, osmotic adjustment (OA), photochemical efficiency (Fv/Fm), net photosynthetic rate, and reduced oxidative damage. iTRAQ-based proteomics found that enhanced chaperones accumulation, carbohydrates, amino acids, and energy metabolism played important roles in protein protection, OA, energy maintenance, and metabolic balance, which is important adaptive response to drought stress in creeping bentgrass. The GABA further promoted energy production and conversion, antioxidant defense, and DHN3 accumulation that were essential for energy requirement, ROS-scavenging, and the prevention of cell dehydration in leaf during drought stress. In addition, GABA-treated plants maintained significantly higher abundance of dicarboxylate transporter 2.1, ATP-dependent zinc metalloprotease, receptor-like protein kinase HERK1, o-acyltransferase WSD1, omega-6 fatty acid desaturase, and two-component response regulator ORR21 than untreated plants under drought stress. The result provides new evidences that GABA-induced drought tolerance is possibly involved in the improvement of nitrogen recycling, protection of photosystem II, mitigation of drought-depressed cell elongation, wax biosynthesis, fatty acid desaturase, and delaying leaf senescence in creeping bentgrass 
650 4 |a Journal Article 
650 4 |a Cell elongation 
650 4 |a Dehydrins 
650 4 |a Energy metabolism 
650 4 |a Fatty acid desaturation 
650 4 |a Metabolic pathway 
650 4 |a Wax biosynthesis 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a gamma-Aminobutyric Acid  |2 NLM 
650 7 |a 56-12-2  |2 NLM 
700 1 |a Huang, Ting  |e verfasserin  |4 aut 
700 1 |a Tang, Mingyan  |e verfasserin  |4 aut 
700 1 |a Cheng, Binzhen  |e verfasserin  |4 aut 
700 1 |a Peng, Yan  |e verfasserin  |4 aut 
700 1 |a Zhang, Xinquan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 145(2019) vom: 01. Dez., Seite 216-226  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnas 
773 1 8 |g volume:145  |g year:2019  |g day:01  |g month:12  |g pages:216-226 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2019.10.018  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 145  |j 2019  |b 01  |c 12  |h 216-226