|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM302866345 |
003 |
DE-627 |
005 |
20231225111628.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201904386
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1009.xml
|
035 |
|
|
|a (DE-627)NLM302866345
|
035 |
|
|
|a (NLM)31682285
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Chun-Wei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Mechanical Analogue of a Majorana Bound State
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.12.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a The discovery of topologically nontrivial electronic systems has opened a new age in condensed matter research. From topological insulators to topological superconductors and Weyl semimetals, it is now understood that some of the most remarkable and robust phases in electronic systems (e.g., quantum Hall or anomalous quantum Hall) are the result of topological protection. These powerful ideas have recently begun to be explored also in bosonic systems. Topologically protected acoustic, mechanical, and optical edge states have been demonstrated in a number of systems that recreate the requisite topological conditions. Such states that propagate without backscattering could find important applications in communications and energy technologies. Here, a topologically bound mechanical state, a different class of nonpropagating protected state that cannot be destroyed by local perturbations, is demonstrated. It is in particular a mechanical analogue of the well-known Majorana bound states (MBSs) of electronic topological superconductor systems. The topological binding is implemented by creating a Kekulé distortion vortex on a 2D mechanical honeycomb superlattice that can be mapped to a magnetic flux vortex in a topological superconductor
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Majorana bound states
|
650 |
|
4 |
|a topological insulators
|
700 |
1 |
|
|a Lera, Natalia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chaunsali, Rajesh
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Torrent, Daniel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Alvarez, Jose Vicente
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jinkyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a San-Jose, Pablo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Christensen, Johan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 51 vom: 01. Dez., Seite e1904386
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:51
|g day:01
|g month:12
|g pages:e1904386
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201904386
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 51
|b 01
|c 12
|h e1904386
|