Visual Semantic Information Pursuit : A Survey

Visual semantic information comprises two important parts: the meaning of each visual semantic unit and the coherent visual semantic relation conveyed by these visual semantic units. Essentially, the former one is a visual perception task while the latter corresponds to visual context reasoning. Rem...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 4 vom: 29. Apr., Seite 1404-1422
1. Verfasser: Liu, Daqi (VerfasserIn)
Weitere Verfasser: Bober, Miroslaw, Kittler, Josef
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM302797386
003 DE-627
005 20231225111500.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2950025  |2 doi 
028 5 2 |a pubmed24n1009.xml 
035 |a (DE-627)NLM302797386 
035 |a (NLM)31675316 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Daqi  |e verfasserin  |4 aut 
245 1 0 |a Visual Semantic Information Pursuit  |b A Survey 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Visual semantic information comprises two important parts: the meaning of each visual semantic unit and the coherent visual semantic relation conveyed by these visual semantic units. Essentially, the former one is a visual perception task while the latter corresponds to visual context reasoning. Remarkable advances in visual perception have been achieved due to the success of deep learning. In contrast, visual semantic information pursuit, a visual scene semantic interpretation task combining visual perception and visual context reasoning, is still in its early stage. It is the core task of many different computer vision applications, such as object detection, visual semantic segmentation, visual relationship detection, or scene graph generation. Since it helps to enhance the accuracy and the consistency of the resulting interpretation, visual context reasoning is often incorporated with visual perception in current deep end-to-end visual semantic information pursuit methods. Surprisingly, a comprehensive review for this exciting area is still lacking. In this survey, we present a unified theoretical paradigm for all these methods, followed by an overview of the major developments and the future trends in each potential direction. The common benchmark datasets, the evaluation metrics and the comparisons of the corresponding methods are also introduced 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bober, Miroslaw  |e verfasserin  |4 aut 
700 1 |a Kittler, Josef  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 4 vom: 29. Apr., Seite 1404-1422  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:4  |g day:29  |g month:04  |g pages:1404-1422 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2950025  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 4  |b 29  |c 04  |h 1404-1422