3D Fingerprint Recognition based on Ridge-Valley-Guided 3D Reconstruction and 3D Topology Polymer Feature Extraction

An automated fingerprint recognition system (AFRS) for 3D fingerprints is essential and highly promising for biometric security. Despite the progress in developing 3D AFRSs, achieving high-quality real-time reconstruction and high-accuracy recognition of 3D fingerprints remain two challenging issues...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 3 vom: 29. März, Seite 1085-1091
1. Verfasser: Yin, Xuefei (VerfasserIn)
Weitere Verfasser: Zhu, Yanming, Hu, Jiankun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM302797378
003 DE-627
005 20231225111500.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2949299  |2 doi 
028 5 2 |a pubmed24n1009.xml 
035 |a (DE-627)NLM302797378 
035 |a (NLM)31675315 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yin, Xuefei  |e verfasserin  |4 aut 
245 1 0 |a 3D Fingerprint Recognition based on Ridge-Valley-Guided 3D Reconstruction and 3D Topology Polymer Feature Extraction 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a An automated fingerprint recognition system (AFRS) for 3D fingerprints is essential and highly promising for biometric security. Despite the progress in developing 3D AFRSs, achieving high-quality real-time reconstruction and high-accuracy recognition of 3D fingerprints remain two challenging issues. To address them, we propose a robust 3D AFRS based on ridge-valley (RV)-guided 3D fingerprint reconstruction and 3D topology polymer (TTP) feature extraction. The former considers the unique fingerprint characteristics of the RV and achieves real-time reconstruction. Unlike traditional triangulation-based methods that establish correspondences between points by cross-correlation-based searching, we propose to establish RV correspondences (RVCs) between ridges/valleys by defining and calculating a RVC matrix based on the topology of RV curves. To enhance depth reconstruction, curve-based smoothing is proposed to refine our novel RV disparity map. The TTP feature codes the 3D topology by projecting the 3D minutiae onto multiple planes and extracting their corresponding 2D topologies and has proven to be effective and efficient for 3D fingerprint recognition. Comprehensive experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both reconstruction and recognition accuracy. Also, due to its very short running time, it is appropriate for practical applications 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhu, Yanming  |e verfasserin  |4 aut 
700 1 |a Hu, Jiankun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 3 vom: 29. März, Seite 1085-1091  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:3  |g day:29  |g month:03  |g pages:1085-1091 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2949299  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 3  |b 29  |c 03  |h 1085-1091