PML-LocNet : Improving Object Localization with Prior-induced Multi-view Learning Network

This paper introduces a new model for Weakly Supervised Object Localization (WSOL) problems where only image-level supervision is provided. The key to solve such problems is to infer the object locations accurately. Previous methods usually model the missing object locations as latent variables, and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 28. Okt.
1. Verfasser: Zhang, Xiaopeng (VerfasserIn)
Weitere Verfasser: Yang, Yang, Xiong, Hongkai, Feng, Jiashi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM302751491
003 DE-627
005 20240229162400.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2947155  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM302751491 
035 |a (NLM)31670666 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xiaopeng  |e verfasserin  |4 aut 
245 1 0 |a PML-LocNet  |b Improving Object Localization with Prior-induced Multi-view Learning Network 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a This paper introduces a new model for Weakly Supervised Object Localization (WSOL) problems where only image-level supervision is provided. The key to solve such problems is to infer the object locations accurately. Previous methods usually model the missing object locations as latent variables, and alternate between updating their estimates and learning a detector accordingly. However, the performance of such alternative optimization is sensitive to the quality of the initial latent variables and the resulted localization model is prone to overfitting to improper localizations. To address these issues, we develop a Prior-induced Multi-view Learning Localization Network (PML-LocNet) which exploits both view diversity and sample diversity to improve object localization. In particular, the view diversity is imposed by a two-phase multi-view learning strategy, with which the complementarity among learned features from different views and the consensus among localized instances from each view are leveraged to benefit localization. The sample diversity is pursued by harnessing coarse-to-fine priors at both image and instance levels. With these priors, more emphasis would go to the reliable samples and the contributions of the unreliable ones would be decreased, such that the intrinsic characteristics of each sample can be exploited to make the model more robust during network learning. PML-LocNet can be easily combined with existing WSOL models to further improve the localization accuracy. Its effectiveness has been proved experimentally. Notably, it achieves 69.3% CorLoc and 50.4% mAP on PASCAL VOC 2007, surpassing the state-of-the-arts by a large margin 
650 4 |a Journal Article 
700 1 |a Yang, Yang  |e verfasserin  |4 aut 
700 1 |a Xiong, Hongkai  |e verfasserin  |4 aut 
700 1 |a Feng, Jiashi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 28. Okt.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:28  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2947155  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 28  |c 10