Weakly-Supervised Learning of Category-Specific 3D Object Shapes

Category-specific 3D object shape models have greatly boosted the recent advances in object detection, recognition and segmentation. However, even the most advanced approach for learning 3D object shapes still requires heavy manual annotations on large-scale 2D images. Such annotations include objec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 4 vom: 31. Apr., Seite 1423-1437
1. Verfasser: Han, Junwei (VerfasserIn)
Weitere Verfasser: Yang, Yang, Zhang, Dingwen, Huang, Dong, Xu, Dong, De La Torre, Fernando
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM302751475
003 DE-627
005 20231225111403.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2949562  |2 doi 
028 5 2 |a pubmed24n1009.xml 
035 |a (DE-627)NLM302751475 
035 |a (NLM)31670664 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Junwei  |e verfasserin  |4 aut 
245 1 0 |a Weakly-Supervised Learning of Category-Specific 3D Object Shapes 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Category-specific 3D object shape models have greatly boosted the recent advances in object detection, recognition and segmentation. However, even the most advanced approach for learning 3D object shapes still requires heavy manual annotations on large-scale 2D images. Such annotations include object categories, object keypoints, and figure-ground segmentation for the instances in each image. In particular, annotating figure-ground segmentation is unbearably labor-intensive and time-consuming. To address this problem, this paper devotes to learn category-specific 3D shape models under weak supervision, where only object categories and keypoints are required to be manually annotated on the training 2D images. By exploring the underlying relationship between two tasks: object segmentation and category-specific 3D shape reconstruction, we propose a novel weakly-supervised learning framework to jointly address these two tasks and combine them to boost the final performance of the learned 3D shape models. Moreover, learning without using figure-ground segmentation leads to ambiguous solutions. To this end, we develop the confidence weighting schemes in the viewpoint estimation and 3D shape learning procedure. These schemes effectively reduce the confusion caused by the noisy data and thus increase the chances for recovering more reliable 3D object shapes. Comprehensive experiments on the challenging PASCAL VOC benchmark show that our framework achieves comparable performance with the state-of-the-art methods that use expensive manual segmentation-level annotations. In addition, our experiments also demonstrate that our 3D shape models improve object segmentation performance 
650 4 |a Journal Article 
700 1 |a Yang, Yang  |e verfasserin  |4 aut 
700 1 |a Zhang, Dingwen  |e verfasserin  |4 aut 
700 1 |a Huang, Dong  |e verfasserin  |4 aut 
700 1 |a Xu, Dong  |e verfasserin  |4 aut 
700 1 |a De La Torre, Fernando  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 4 vom: 31. Apr., Seite 1423-1437  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:4  |g day:31  |g month:04  |g pages:1423-1437 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2949562  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 4  |b 31  |c 04  |h 1423-1437