UASB-modified Bardenpho process for enhancing bio-treatment efficiency of leachate from a municipal solid waste incineration plant

Copyright © 2019 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 102(2020) vom: 01. Feb., Seite 97-105
1. Verfasser: Li, Jin (VerfasserIn)
Weitere Verfasser: He, Chao, Tian, Tian, Liu, Zongkuan, Gu, Zhaolin, Zhang, Guan, Wang, Wendong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Leachate Modified Bardenpho Municipal solid waste incineration Soluble microbial products (SMPs) UASB Sewage Solid Waste Water Pollutants, Chemical Nitrogen N762921K75
Beschreibung
Zusammenfassung:Copyright © 2019 Elsevier Ltd. All rights reserved.
Generally, the bio-treatment effluent of municipal solid waste incineration (MSWI) leachate was difficult to meet the local leachate discharge standards for chemical oxygen demand (COD) (100 mg/L), ammonia nitrogen (NH4+-N) (25 mg/L), and total nitrogen (TN) (40 mg/L), and advanced treatment (such as coagulation, membrane filtration, advanced oxidation) is required. However, the cost of advanced treatments is proportional to the concentration of the pollutant. Therefore, improved bio-treatment efficiency is the key to reduce the treatment cost of MSWI leachate. In this study, the up-flow anaerobic sludge blanket (UASB) -modified Bardenpho process was used for the treatment of MSWI leachate. The results showed that it was feasible to dilute the leachate by recirculation of the settling tank effluent, which has great significance in the bio-treatment efficiency. The treatment process achieved removal efficiencies of COD and NH4+-N of 97.5-99.5% and 99.3-99.7%, respectively. Adjustments to the operational conditions of the primary anoxic tank, such as adding an organic carbon source and increasing the hydraulic retention time and the nitrification reflux ratio resulted in a TN removal efficiency of 97.7-98.7%. Controlling the generation of dissolved organic nitrogen (DON) and increasing its removal efficiency significantly improved the TN removal efficiency. The concentrations of NH4+-N and TN in the settling tank effluent complied with the local leachate discharge standard, which minimized the cost of advanced treatment. The results provide new ideas for enhancing the bio-treatment efficiency of leachate and theoretical and technical support for reducing the cost of treatment
Beschreibung:Date Completed 30.12.2019
Date Revised 30.12.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1879-2456
DOI:10.1016/j.wasman.2019.10.028