|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM302723420 |
003 |
DE-627 |
005 |
20231225111327.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.16298
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1009.xml
|
035 |
|
|
|a (DE-627)NLM302723420
|
035 |
|
|
|a (NLM)31667850
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hu, Zhengkun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Plant-mediated effects of elevated CO2 and rice cultivars on soil carbon dynamics in a paddy soil
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.05.2021
|
500 |
|
|
|a Date Revised 14.05.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
|
520 |
|
|
|a Soil organic carbon (SOC) sequestration under elevated CO2 concentration (eCO2 ) is a function of carbon (C) input and C retention. Nitrogen (N) limitation in natural ecosystems can constrain plant responses to eCO2 and their subsequent effects on SOC, but the effect of eCO2 on SOC in N-enriched agroecosystems with cultivars highly responsive to eCO2 is largely unknown. We reported results of SOC dynamics from a field free-air CO2 enrichment experiment with two rice cultivars having distinct photosynthetic capacities under eCO2 . A reciprocal incubation experiment was further conducted to disentangle the effect of changes in litter quality and soil microbial community on litter-derived C dynamics. eCO2 significantly increased total SOC content, dissolved organic C and particulate organic C under the strongly responsive cultivar, likely due to enhanced organic C inputs originated from CO2 stimulation of shoot and root biomass. Increases in the residue C : N ratio and fungal abundance induced by eCO2 under the strongly responsive cultivar reduced C losses from decomposition, possibly through increasing microbial C use efficiency. Our findings suggest that applications of high-yielding cultivars may substantially enhance soil C sequestration in rice paddies under future CO2 scenarios
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a carbon (C) use efficiency
|
650 |
|
4 |
|a cultivar varieties
|
650 |
|
4 |
|a global change
|
650 |
|
4 |
|a microbial community
|
650 |
|
4 |
|a plant productivity
|
650 |
|
4 |
|a rice
|
650 |
|
4 |
|a soil organic carbon
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Chen, Xiaoyun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Junneng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Chunwu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Jianguo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Manqiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 225(2020), 6 vom: 30. März, Seite 2368-2379
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:225
|g year:2020
|g number:6
|g day:30
|g month:03
|g pages:2368-2379
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.16298
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 225
|j 2020
|e 6
|b 30
|c 03
|h 2368-2379
|