Two-dimensional subband Steiglitz-McBride algorithm for automatic analysis of two-dimensional nuclear magnetic resonance data

© 2019 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 58(2020), 1 vom: 07. Jan., Seite 106-115
1. Verfasser: Anjum, Muhammad Ali Raza (VerfasserIn)
Weitere Verfasser: Dmochowski, Pawel A, Teal, Paul D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article 2D Steiglitz-McBride 2D-BIC 2D-IPF 2D-NMR algorithm automatic subband
Beschreibung
Zusammenfassung:© 2019 John Wiley & Sons, Ltd.
Rapid, accurate, and automatic quantitation of two-dimensional nuclear magnetic resonance(2D-NMR) data is a challenging problem. Recently, a Bayesian information criterion based subband Steiglitz-McBride algorithm has been shown to exhibit superior performance on all three fronts when applied to the quantitation of one-dimensional NMR free induction decay data. In this paper, we demonstrate that the 2D Steiglitz-McBride algorithm, in conjunction with 2D subband decomposition and the 2D Bayesian information criterion, also achieves excellent results for 2D-NMR data in terms of speed, accuracy, and automation-especially when compared in these respects to the previously published analysis techniques for 2D-NMR data
Beschreibung:Date Completed 27.01.2020
Date Revised 27.01.2020
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.4960