Smoothed Spherical Truncation based on Fuzzy Membership Functions : Application to the Molecular Encoding

© 2019 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 41(2020), 3 vom: 30. Jan., Seite 203-217
1. Verfasser: García-Jacas, César R (VerfasserIn)
Weitere Verfasser: Marrero-Ponce, Yovani, Brizuela, Carlos A, Suárez-Lezcano, José, Martinez-Rios, Felix
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't 3D molecular descriptors QuBiLS-MIDAS fuzzy membership degree fuzzy membership functions geometry matrix neighborhood matrix principal component analysis quantitative structure-activity relationships (QSAR) mehr... spherical truncation variability analysis
LEADER 01000naa a22002652 4500
001 NLM302525084
003 DE-627
005 20231225110915.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26089  |2 doi 
028 5 2 |a pubmed24n1008.xml 
035 |a (DE-627)NLM302525084 
035 |a (NLM)31647589 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a García-Jacas, César R  |e verfasserin  |4 aut 
245 1 0 |a Smoothed Spherical Truncation based on Fuzzy Membership Functions  |b Application to the Molecular Encoding 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.08.2020 
500 |a Date Revised 17.08.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Wiley Periodicals, Inc. 
520 |a A novel spherical truncation method, based on fuzzy membership functions, is introduced to truncate interatomic (or interaminoacid) relations according to smoothing values computed from fuzzy membership degrees. In this method, the molecules are circumscribed into a sphere, so that the geometric centers of the molecules are the centers of the spheres. The fuzzy membership degree of each atom (or aminoacid) is computed from its distance with respect to the geometric center of the molecule, by using a fuzzy membership function. So, the smoothing value to be applied in the truncation of a relation (or interaction) is computed by averaging the fuzzy membership degrees of the atoms (or aminoacids) involved in the relation. This truncation method is rather different from the existing ones, at considering the geometric center for the whole molecule and not only for atom-groups, as well as for using fuzzy membership functions to compute the smoothing values. A variability study on a set comprised of 20,469 compounds (15,050 drug-like compounds, 2994 drugs approved, 880 natural products from African sources, and 1545 plant-derived natural compounds exhibiting anti-cancerous activity) demonstrated that the truncation method proposed allows to determine molecular encodings with better ability for discriminating among structurally different molecules than the encodings obtained without applying truncation or applying non-fuzzy truncation functions. Moreover, a principal component analysis revealed that orthogonal chemical information of the molecules is encoded by using the method proposed. Lastly, a modeling study proved that the truncation method improves the modeling ability of existing geometric molecular descriptors, at allowing to develop more robust models than the ones built only using non-truncated descriptors. In this sense, a comparison and statistical assessment were performed on eight chemical datasets. As a result, the models based on the truncated molecular encodings yielded statistically better results than 12 procedures considered from the literature. It can thus be stated that the proposed truncation method is a relevant strategy for obtaining better molecular encodings, which will be ultimately useful in enhancing the modeling ability of existing encodings both on small-to-medium size molecules and biomacromolecules. © 2019 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a 3D molecular descriptors 
650 4 |a QuBiLS-MIDAS 
650 4 |a fuzzy membership degree 
650 4 |a fuzzy membership functions 
650 4 |a geometry matrix 
650 4 |a neighborhood matrix 
650 4 |a principal component analysis 
650 4 |a quantitative structure-activity relationships (QSAR) 
650 4 |a spherical truncation 
650 4 |a variability analysis 
700 1 |a Marrero-Ponce, Yovani  |e verfasserin  |4 aut 
700 1 |a Brizuela, Carlos A  |e verfasserin  |4 aut 
700 1 |a Suárez-Lezcano, José  |e verfasserin  |4 aut 
700 1 |a Martinez-Rios, Felix  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 41(2020), 3 vom: 30. Jan., Seite 203-217  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:41  |g year:2020  |g number:3  |g day:30  |g month:01  |g pages:203-217 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26089  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2020  |e 3  |b 30  |c 01  |h 203-217