Single-base resolution methylome of cotton cytoplasmic male sterility system reveals epigenomic changes in response to high-temperature stress during anther development

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 71(2020), 3 vom: 23. Jan., Seite 951-969
1. Verfasser: Zhang, Meng (VerfasserIn)
Weitere Verfasser: Zhang, Xuexian, Guo, Liping, Qi, Tingxiang, Liu, Guoyuan, Feng, Juanjuan, Shahzad, Kashif, Zhang, Bingbing, Li, Xue, Wang, Hailin, Tang, Huini, Qiao, Xiuqin, Wu, Jianyong, Xing, Chaozhu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Anther development cotton CMS system gene expression high-temperature stress methylome oxidative phosphorylation transcriptome DNA Transposable Elements
LEADER 01000naa a22002652 4500
001 NLM302459596
003 DE-627
005 20231225110753.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erz470  |2 doi 
028 5 2 |a pubmed24n1008.xml 
035 |a (DE-627)NLM302459596 
035 |a (NLM)31639825 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Meng  |e verfasserin  |4 aut 
245 1 0 |a Single-base resolution methylome of cotton cytoplasmic male sterility system reveals epigenomic changes in response to high-temperature stress during anther development 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2021 
500 |a Date Revised 06.04.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a Anther development in flowering plants is highly sensitive to high-temperature (HT) stress. Understanding the potential epigenetic mechanism of anther infertility induced by HT stress in cotton (Gossypium hirsutum L.) is crucial for the effective use of genetic resources to guide plant breeding. Using the whole-genome bisulfite sequencing, we map cytosine methylation at single-base resolution across the whole genome of cotton anthers, and changes in the methylome of the cytoplasmic male sterility system associated with HT stress were analysed in two cotton lines with contrasting HT stress tolerance. The cotton anther genome was found to display approximately 31.6%, 68.7%, 61.8%, and 21.8% methylation across all sequenced C sites and in the CG, CHG, and CHH sequence contexts, respectively. In an integrated global methylome and transcriptome analysis, only promoter-unmethylated genes showed higher expression levels than promoter-methylated genes, whereas gene body methylation presented an obvious positive correlation with gene expression. The methylation profiles of transposable elements in cotton anthers were characterized, and more differentially methylated transposable elements were demethylated under HT stress. HT-induced promoter methylation changes led to the up-regulation of the mitochondrial respiratory chain enzyme-associated genes GhNDUS7, GhCOX6A, GhCX5B2, and GhATPBM, ultimately promoting a series of redox processes to form ATP for normal anther development under HT stress. In vitro application of the common DNA methylation inhibitor 5-azacytidine and accelerator methyl trifluoromethanesulfonate demonstrated that DNA demethylation promoted anther development, while increased methylation only partially inhibited anther development under HT stress 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Anther development 
650 4 |a cotton CMS system 
650 4 |a gene expression 
650 4 |a high-temperature stress 
650 4 |a methylome 
650 4 |a oxidative phosphorylation 
650 4 |a transcriptome 
650 7 |a DNA Transposable Elements  |2 NLM 
700 1 |a Zhang, Xuexian  |e verfasserin  |4 aut 
700 1 |a Guo, Liping  |e verfasserin  |4 aut 
700 1 |a Qi, Tingxiang  |e verfasserin  |4 aut 
700 1 |a Liu, Guoyuan  |e verfasserin  |4 aut 
700 1 |a Feng, Juanjuan  |e verfasserin  |4 aut 
700 1 |a Shahzad, Kashif  |e verfasserin  |4 aut 
700 1 |a Zhang, Bingbing  |e verfasserin  |4 aut 
700 1 |a Li, Xue  |e verfasserin  |4 aut 
700 1 |a Wang, Hailin  |e verfasserin  |4 aut 
700 1 |a Tang, Huini  |e verfasserin  |4 aut 
700 1 |a Qiao, Xiuqin  |e verfasserin  |4 aut 
700 1 |a Wu, Jianyong  |e verfasserin  |4 aut 
700 1 |a Xing, Chaozhu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 71(2020), 3 vom: 23. Jan., Seite 951-969  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:71  |g year:2020  |g number:3  |g day:23  |g month:01  |g pages:951-969 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erz470  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 71  |j 2020  |e 3  |b 23  |c 01  |h 951-969