CrimAnalyzer : Understanding Crime Patterns in São Paulo

São Paulo is the largest city in South America, with crime rates that reflect its size. The number and type of crimes vary considerably around the city, assuming different patterns depending on urban and social characteristics of each particular location. Previous works have mostly focused on the an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 4 vom: 15. Apr., Seite 2313-2328
1. Verfasser: Garcia, Germain (VerfasserIn)
Weitere Verfasser: Silveira, Jaqueline, Poco, Jorge, Paiva, Afonso, Nery, Marcelo Batista, Silva, Claudio T, Adorno, Sergio, Nonato, Luis Gustavo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM302403876
003 DE-627
005 20231225110639.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2947515  |2 doi 
028 5 2 |a pubmed24n1007.xml 
035 |a (DE-627)NLM302403876 
035 |a (NLM)31634135 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Garcia, Germain  |e verfasserin  |4 aut 
245 1 0 |a CrimAnalyzer  |b Understanding Crime Patterns in São Paulo 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.09.2021 
500 |a Date Revised 27.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a São Paulo is the largest city in South America, with crime rates that reflect its size. The number and type of crimes vary considerably around the city, assuming different patterns depending on urban and social characteristics of each particular location. Previous works have mostly focused on the analysis of crimes with the intent of uncovering patterns associated to social factors, seasonality, and urban routine activities. Therefore, those studies and tools are more global in the sense that they are not designed to investigate specific regions of the city such as particular neighborhoods, avenues, or public areas. Tools able to explore specific locations of the city are essential for domain experts to accomplish their analysis in a bottom-up fashion, revealing how urban features related to mobility, passersby behavior, and presence of public infrastructures (e.g., terminals of public transportation and schools) can influence the quantity and type of crimes. In this paper, we present CrimAnalyzer, a visual analytic tool that allows users to study the behavior of crimes in specific regions of a city. The system allows users to identify local hotspots and the pattern of crimes associated to them, while still showing how hotspots and corresponding crime patterns change over time. CrimAnalyzer has been developed from the needs of a team of experts in criminology and deals with three major challenges: i) flexibility to explore local regions and understand their crime patterns, ii) identification of spatial crime hotspots that might not be the most prevalent ones in terms of the number of crimes but that are important enough to be investigated, and iii) understand the dynamic of crime patterns over time. The effectiveness and usefulness of the proposed system are demonstrated by qualitative and quantitative comparisons as well as by case studies run by domain experts involving real data. The experiments show the capability of CrimAnalyzer in identifying crime-related phenomena 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Silveira, Jaqueline  |e verfasserin  |4 aut 
700 1 |a Poco, Jorge  |e verfasserin  |4 aut 
700 1 |a Paiva, Afonso  |e verfasserin  |4 aut 
700 1 |a Nery, Marcelo Batista  |e verfasserin  |4 aut 
700 1 |a Silva, Claudio T  |e verfasserin  |4 aut 
700 1 |a Adorno, Sergio  |e verfasserin  |4 aut 
700 1 |a Nonato, Luis Gustavo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 4 vom: 15. Apr., Seite 2313-2328  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:4  |g day:15  |g month:04  |g pages:2313-2328 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2947515  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 4  |b 15  |c 04  |h 2313-2328