Variational Bayesian Blind Color Deconvolution of Histopathological Images

Most whole-slide histological images are stained with two or more chemical dyes. Slide stain separation or color deconvolution is a crucial step within the digital pathology workflow. In this paper, the blind color deconvolution problem is formulated within the Bayesian framework. Starting from a mu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 29(2020), 1 vom: 01., Seite 2026-2036
1. Verfasser: Hidalgo-Gavira, Natalia (VerfasserIn)
Weitere Verfasser: Mateos, Javier, Vega, Miguel, Molina, Rafael, Katsaggelos, Aggelos K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM302403795
003 DE-627
005 20231225110639.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2946442  |2 doi 
028 5 2 |a pubmed24n1007.xml 
035 |a (DE-627)NLM302403795 
035 |a (NLM)31634128 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hidalgo-Gavira, Natalia  |e verfasserin  |4 aut 
245 1 0 |a Variational Bayesian Blind Color Deconvolution of Histopathological Images 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.10.2020 
500 |a Date Revised 05.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Most whole-slide histological images are stained with two or more chemical dyes. Slide stain separation or color deconvolution is a crucial step within the digital pathology workflow. In this paper, the blind color deconvolution problem is formulated within the Bayesian framework. Starting from a multi-stained histological image, our model takes into account both spatial relations among the concentration image pixels and similarity between a given reference color-vector matrix and the estimated one. Using Variational Bayes inference, three efficient new blind color deconvolution methods are proposed which provide automated procedures to estimate all the model parameters in the problem. A comparison with classical and current state-of-the-art color deconvolution algorithms using real images has been carried out demonstrating the superiority of the proposed approach 
650 4 |a Journal Article 
700 1 |a Mateos, Javier  |e verfasserin  |4 aut 
700 1 |a Vega, Miguel  |e verfasserin  |4 aut 
700 1 |a Molina, Rafael  |e verfasserin  |4 aut 
700 1 |a Katsaggelos, Aggelos K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 29(2020), 1 vom: 01., Seite 2026-2036  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:29  |g year:2020  |g number:1  |g day:01  |g pages:2026-2036 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2946442  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2020  |e 1  |b 01  |h 2026-2036