Learning Depth with Convolutional Spatial Propagation Network

In this paper, we propose the convolutional spatial propagation network (CSPN) and demonstrate its effectiveness for various depth estimation tasks. CSPN is a simple and efficient linear propagation model, where the propagation is performed with a manner of recurrent convolutional operations, in whi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 10 vom: 01. Okt., Seite 2361-2379
1. Verfasser: Cheng, Xinjing (VerfasserIn)
Weitere Verfasser: Wang, Peng, Yang, Ruigang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM302403736
003 DE-627
005 20231225110639.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2947374  |2 doi 
028 5 2 |a pubmed24n1007.xml 
035 |a (DE-627)NLM302403736 
035 |a (NLM)31634121 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Xinjing  |e verfasserin  |4 aut 
245 1 0 |a Learning Depth with Convolutional Spatial Propagation Network 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose the convolutional spatial propagation network (CSPN) and demonstrate its effectiveness for various depth estimation tasks. CSPN is a simple and efficient linear propagation model, where the propagation is performed with a manner of recurrent convolutional operations, in which the affinity among neighboring pixels is learned through a deep convolutional neural network (CNN). Compare to the previous state-of-the-art (SOTA) linear propagation model, i.e., spatial propagation networks (SPN), CSPN is 2 to 5× faster in practice. We concatenate CSPN and its variants to SOTA depth estimation networks, which significantly improve the depth accuracy. Specifically, we apply CSPN to two depth estimation problems: depth completion and stereo matching, in which we design modules which adapts the original 2D CSPN to embed sparse depth samples during the propagation, operate with 3D convolution and be synergistic with spatial pyramid pooling. In our experiments, we show that all these modules contribute to the final performance. For the task of depth completion, our method reduce the depth error over 30 percent in the NYU v2 and KITTI datasets. For the task of stereo matching, our method currently ranks 1st on both the KITTI Stereo 2012 and 2015 benchmarks 
650 4 |a Journal Article 
700 1 |a Wang, Peng  |e verfasserin  |4 aut 
700 1 |a Yang, Ruigang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 10 vom: 01. Okt., Seite 2361-2379  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:10  |g day:01  |g month:10  |g pages:2361-2379 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2947374  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 10  |b 01  |c 10  |h 2361-2379