Hierarchical Rose Petal Surfaces Delay the Early-Stage Bacterial Biofilm Growth

A variety of natural surfaces exhibit antibacterial properties; as a result, significant efforts in the past decade have been dedicated toward fabrication of biomimetic surfaces that can help control biofilm growth. Examples of such surfaces include rose petals, which possess hierarchical structures...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 45 vom: 12. Nov., Seite 14670-14680
1. Verfasser: Cao, Yunyi (VerfasserIn)
Weitere Verfasser: Jana, Saikat, Bowen, Leon, Tan, Xiaolong, Liu, Hongzhong, Rostami, Nadia, Brown, James, Jakubovics, Nicholas S, Chen, Jinju
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Anti-Bacterial Agents Plant Extracts
LEADER 01000naa a22002652 4500
001 NLM302368183
003 DE-627
005 20231225110555.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.9b02367  |2 doi 
028 5 2 |a pubmed24n1007.xml 
035 |a (DE-627)NLM302368183 
035 |a (NLM)31630525 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cao, Yunyi  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Rose Petal Surfaces Delay the Early-Stage Bacterial Biofilm Growth 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2020 
500 |a Date Revised 31.08.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a A variety of natural surfaces exhibit antibacterial properties; as a result, significant efforts in the past decade have been dedicated toward fabrication of biomimetic surfaces that can help control biofilm growth. Examples of such surfaces include rose petals, which possess hierarchical structures like the micropapillae measuring tens of microns and nanofolds that range in the size of 700 ± 100 nm. We duplicated the natural structures on rose petal surfaces via a simple UV-curable nanocasting technique and tested the efficacy of these artificial surfaces in preventing biofilm growth using clinically relevant bacteria strains. The rose petal-structured surfaces exhibited hydrophobicity (contact angle (CA) ≈ 130.8° ± 4.3°) and high CA hysteresis (∼91.0° ± 4.9°). Water droplets on rose petal replicas evaporated following the constant contact line mode, indicating the likely coexistence of both Cassie and Wenzel states (Cassie-Baxter impregnating the wetting state). Fluorescence microscopy and image analysis revealed the significantly lower attachment of Staphylococcus epidermidis (86.1 ± 6.2% less) and Pseudomonas aeruginosa (85.9 ± 3.2% less) on the rose petal-structured surfaces, compared with flat surfaces over a period of 2 h. An extensive biofilm matrix was observed in biofilms formed by both species on flat surfaces after prolonged growth (several days), but was less apparent on rose petal-biomimetic surfaces. In addition, the biomass of S. epidermidis (63.2 ± 9.4% less) and P. aeruginosa (76.0 ± 10.0% less) biofilms were significantly reduced on the rose petal-structured surfaces, in comparison to the flat surfaces. By comparing P. aeruginosa growth on representative unitary nanopillars, we demonstrated that hierarchical structures are more effective in delaying biofilm growth. The mechanisms are two-fold: (1) the nanofolds across the hemispherical micropapillae restrict initial attachment of bacterial cells and delay the direct contact of cells via cell alignment and (2) the hemispherical micropapillae arrays isolate bacterial clusters and inhibit the formation of a fibrous network. The hierarchical features on rose petal surfaces may be useful for developing strategies to control biofilm formation in medical and industrial contexts 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Anti-Bacterial Agents  |2 NLM 
650 7 |a Plant Extracts  |2 NLM 
700 1 |a Jana, Saikat  |e verfasserin  |4 aut 
700 1 |a Bowen, Leon  |e verfasserin  |4 aut 
700 1 |a Tan, Xiaolong  |e verfasserin  |4 aut 
700 1 |a Liu, Hongzhong  |e verfasserin  |4 aut 
700 1 |a Rostami, Nadia  |e verfasserin  |4 aut 
700 1 |a Brown, James  |e verfasserin  |4 aut 
700 1 |a Jakubovics, Nicholas S  |e verfasserin  |4 aut 
700 1 |a Chen, Jinju  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 35(2019), 45 vom: 12. Nov., Seite 14670-14680  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:35  |g year:2019  |g number:45  |g day:12  |g month:11  |g pages:14670-14680 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.9b02367  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 35  |j 2019  |e 45  |b 12  |c 11  |h 14670-14680