Impact of Aromatic Counter-Ions Charge Delocalization on the Micellization Behavior of Surface-Active Ionic Liquids
The nature of counter-ions governs the micellar and structural characteristics of surface-active ionic liquids (SAILs). Especially, the introduction of aromatic counter-ions significantly increases their surface adsorption and induces the formation of various types of aggregates like prolate ellipso...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 45 vom: 12. Nov., Seite 14586-14595 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The nature of counter-ions governs the micellar and structural characteristics of surface-active ionic liquids (SAILs). Especially, the introduction of aromatic counter-ions significantly increases their surface adsorption and induces the formation of various types of aggregates like prolate ellipsoidal micelles, rodlike micelles, vesicles, lamellars, etc. The present study reports the role of charge delocalization of two different aromatic counter-ions in the micellization behavior of their respective SAILs in aqueous medium. For this purpose, we have synthesized two SAILs, namely, 1-tetradecyl-3-methylimidzolium phenolate [C14mim][PO] and 1-tetradecyl-3-methylimidzolium benzoate [C14mim][BZ]. The O-atom of phenolate (PO-) possesses negative charge, which is delocalized on its phenyl ring. Conversely, the negative charge of benzoate (BZ-) is not delocalized on its phenyl ring. The more hydrophobic BZ- counter-ion increases the hydrophobic interactions and reduces the electrostatic repulsions more efficiently as compared to PO-, which results in a lower critical micelle concentration (cmc) of [C14mim][BZ] than that of [C14mim][PO]. Interfacial properties obtained by tensiometry reveal better surface activity and absorption efficiency of [C14mim][BZ] as compared to [C14mim][PO]. The increase of cmc and degree of counter-ion binding (β) with the rise of temperature for both SAILs has been observed by conductometry. The decrease in the polarity of pyrene microenvironment explains the higher compactness of [C14mim][BZ] aggregates than that of [C14mim][PO], observed by fluorimetry. The position of PO- and BZ- is in the stern and palisade layers of C14mim+ aggregates, respectively, located by 1H NMR. The existence of prolate ellipsoidal micelles for both SAILs has been established by small-angle neutron scattering measurements. Thus, the interfacial and bulk properties of [C14mim][PO] lie somewhere in between those of the SAILs having perfect aromatic counter-ions, [C14mim][BZ], and the SAILs having regular inorganic counter-ions like Cl-, Br-, etc |
---|---|
Beschreibung: | Date Revised 04.03.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.9b02695 |