Skeleton Filter : A Self-Symmetric Filter for Skeletonization in Noisy Text Images

Robustly computing the skeletons of objects in natural images is difficult due to the large variations in shape boundaries and the large amount of noise in the images. Inspired by recent findings in neuroscience, we propose the Skeleton Filter, which is a novel model for skeleton extraction from nat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 07. Okt.
1. Verfasser: Bai, Xiuxiu (VerfasserIn)
Weitere Verfasser: Ye, Lele, Zhu, Jihua, Zhu, Li, Komura, Taku
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM302106332
003 DE-627
005 20240229162346.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2944560  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM302106332 
035 |a (NLM)31603786 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Xiuxiu  |e verfasserin  |4 aut 
245 1 0 |a Skeleton Filter  |b A Self-Symmetric Filter for Skeletonization in Noisy Text Images 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Robustly computing the skeletons of objects in natural images is difficult due to the large variations in shape boundaries and the large amount of noise in the images. Inspired by recent findings in neuroscience, we propose the Skeleton Filter, which is a novel model for skeleton extraction from natural images. The Skeleton Filter consists of a pair of oppositely oriented Gabor-like filters; by applying the Skeleton Filter in various orientations to an image at multiple resolutions and fusing the results, our system can robustly extract the skeleton even under highly noisy conditions. We evaluate the performance of our approach using challenging noisy text datasets and demonstrate that our pipeline realizes state-of-the-art performance for extracting the text skeleton. Moreover, the presence of Gabor filters in the human visual system and the simple architecture of the Skeleton Filter can help explain the strong capabilities of humans in perceiving skeletons of objects, even under dramatically noisy conditions 
650 4 |a Journal Article 
700 1 |a Ye, Lele  |e verfasserin  |4 aut 
700 1 |a Zhu, Jihua  |e verfasserin  |4 aut 
700 1 |a Zhu, Li  |e verfasserin  |4 aut 
700 1 |a Komura, Taku  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 07. Okt.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:07  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2944560  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 07  |c 10