Semi-Supervised Human Detection via Region Proposal Networks Aided by Verification
In this paper, we explore how to leverage readily available unlabeled data to improve semi-supervised human detection performance. For this purpose, we specifically modify the region proposal network (RPN) for learning on a partially labeled dataset. Based on commonly observed false positive types,...
Ausführliche Beschreibung
Bibliographische Detailangaben
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 03. Okt.
|
| 1. Verfasser: |
Wu, Si
(VerfasserIn) |
| Weitere Verfasser: |
Wu, Wenhao,
Lei, Shiyao,
Lin, Sihao,
Li, Rui,
Yu, Zhiwen,
Wong, Hau-San |
| Format: | Online-Aufsatz
|
| Sprache: | English |
| Veröffentlicht: |
2019
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
| Schlagworte: | Journal Article |