Tough Bonding, On-Demand Debonding, and Facile Rebonding between Hydrogels and Diverse Metal Surfaces

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 48 vom: 16. Nov., Seite e1904732
1. Verfasser: Li, Weichang (VerfasserIn)
Weitere Verfasser: Liu, Xiaobo, Deng, Zhishuang, Chen, Yutong, Yu, Qianqian, Tang, Wen, Sun, Tao Lin, Zhang, Yu Shrike, Yue, Kan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article hydrogels on-demand debonding stimuli-responsive surface modification tough bonding
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid systems of hydrogels and metals with tough bonding may find widespread applications. Here, a simple and universal method to obtain strong adhesion between hydrogels and diverse metal surfaces, such as titanium, steel, nickel, tantalum, argentum, and aluminum, with adhesion energy up to >1000 J m-2 is reported. To achieve such, the metal surfaces are instantly modified with a linker molecule via soaking, dip-coating, or drop-casting. The designed linker molecule has a carboxylic acid group to bind with a metal surface, and a methacrylic group to crosslink with a hydrogel, thus bridging the interface between them. In addition, by introducing a stimulus-responsive disulfide bond into the linker molecule, the on-demand debonding between toughly bonded hydrogel and metal surface, which is enabled by reductive cleavage of the disulfide chemical linkage, is also demonstrated. More interestingly, after the reductive debonding, the resulting metal surface with free thiol groups can be easily rebonded with a second hydrogel without any further surface modification. The strategy may provide unique opportunities in designing hybrid devices that are suitable for complex and dynamic environments
Beschreibung:Date Completed 26.11.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201904732