Ultralow Self-Cross-Linked Poly(N-isopropylacrylamide) Microgels Prepared by Solvent Exchange

We found that the poly(N-isopropylacrylamide) (PNIPAm) synthesized by free-radical polymerization in organic phase could also form stable microgels in water through solvent exchange without chemical cross-linkers. Dynamic light scattering and transmission electron microscopy showed the larger swelli...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 35(2019), 43 vom: 29. Okt., Seite 13991-13998
Auteur principal: Wang, Jinghong (Auteur)
Autres auteurs: Liu, Yuping, Chen, Rui, Zhang, Zexin, Chen, Gaojian, Chen, Hong
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:We found that the poly(N-isopropylacrylamide) (PNIPAm) synthesized by free-radical polymerization in organic phase could also form stable microgels in water through solvent exchange without chemical cross-linkers. Dynamic light scattering and transmission electron microscopy showed the larger swelling ratio and higher deformability of these microgels. Nuclear magnetic resonance and infrared spectroscopy indicated that the self-cross-linking structures in these microgels were attributed to the hydrogen atom abstraction both from the isopropyl tert-carbon atoms and the vinyl tert-carbon atoms in PNIPAm chains and the organic solvents were important assistants in the hydrogen abstraction behavior. Our discovery revealed that the self-cross-linking of PNIPAm chains is a common phenomenon within their free-radical polymerization process, whether in aqueous phase or in organic phase. Besides, the addition of second monomers will not affect the cross-linkage of the PNIPAm portion, which may be of great significance for the synthesis of various functional ultralow cross-linking PNIPAm microgels
Description:Date Revised 04.03.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b02722