Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Despite the state-of-the-art performance for medical image segmentation, deep convolutional neural networks (CNNs) have rarely provided uncertainty estimations regarding their segmentation outputs, e.g., model (epistemic) and image-based (aleatoric) uncertainties. In this work, we analyze these diff...
Description complète
Détails bibliographiques
Publié dans: | Neurocomputing. - 1998. - 335(2019) vom: 03. Sept., Seite 34-45
|
Auteur principal: |
Wang, Guotai
(Auteur) |
Autres auteurs: |
Li, Wenqi,
Aertsen, Michael,
Deprest, Jan,
Ourselin, Sébastien,
Vercauteren, Tom |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2019
|
Accès à la collection: | Neurocomputing
|
Sujets: | Journal Article
Convolutional neural networks
Data augmentation
Medical image segmentation
Uncertainty estimation |