Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks

Despite the state-of-the-art performance for medical image segmentation, deep convolutional neural networks (CNNs) have rarely provided uncertainty estimations regarding their segmentation outputs, e.g., model (epistemic) and image-based (aleatoric) uncertainties. In this work, we analyze these diff...

Description complète

Détails bibliographiques
Publié dans:Neurocomputing. - 1998. - 335(2019) vom: 03. Sept., Seite 34-45
Auteur principal: Wang, Guotai (Auteur)
Autres auteurs: Li, Wenqi, Aertsen, Michael, Deprest, Jan, Ourselin, Sébastien, Vercauteren, Tom
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Neurocomputing
Sujets:Journal Article Convolutional neural networks Data augmentation Medical image segmentation Uncertainty estimation