High-Dimensional Dense Residual Convolutional Neural Network for Light Field Reconstruction

We consider the problem of high-dimensional light field reconstruction and develop a learning-based framework for spatial and angular super-resolution. Many current approaches either require disparity clues or restore the spatial and angular details separately. Such methods have difficulties with no...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 3 vom: 01. März, Seite 873-886
Auteur principal: Meng, Nan (Auteur)
Autres auteurs: So, Hayden K-H, Sun, Xing, Lam, Edmund Y
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM301883432
003 DE-627
005 20250226022807.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2945027  |2 doi 
028 5 2 |a pubmed25n1006.xml 
035 |a (DE-627)NLM301883432 
035 |a (NLM)31581075 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Meng, Nan  |e verfasserin  |4 aut 
245 1 0 |a High-Dimensional Dense Residual Convolutional Neural Network for Light Field Reconstruction 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We consider the problem of high-dimensional light field reconstruction and develop a learning-based framework for spatial and angular super-resolution. Many current approaches either require disparity clues or restore the spatial and angular details separately. Such methods have difficulties with non-Lambertian surfaces or occlusions. In contrast, we formulate light field super-resolution (LFSR) as tensor restoration and develop a learning framework based on a two-stage restoration with 4-dimensional (4D) convolution. This allows our model to learn the features capturing the geometry information encoded in multiple adjacent views. Such geometric features vary near the occlusion regions and indicate the foreground object border. To train a feasible network, we propose a novel normalization operation based on a group of views in the feature maps, design a stage-wise loss function, and develop the multi-range training strategy to further improve the performance. Evaluations are conducted on a number of light field datasets including real-world scenes, synthetic data, and microscope light fields. The proposed method achieves superior performance and less execution time comparing with other state-of-the-art schemes 
650 4 |a Journal Article 
700 1 |a So, Hayden K-H  |e verfasserin  |4 aut 
700 1 |a Sun, Xing  |e verfasserin  |4 aut 
700 1 |a Lam, Edmund Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 3 vom: 01. März, Seite 873-886  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:43  |g year:2021  |g number:3  |g day:01  |g month:03  |g pages:873-886 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2945027  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 3  |b 01  |c 03  |h 873-886