MFQE 2.0 : A New Approach for Multi-Frame Quality Enhancement on Compressed Video

The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consecutive frames. Since heavy fluctuation exists acros...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 3 vom: 01. März, Seite 949-963
Auteur principal: Guan, Zhenyu (Auteur)
Autres auteurs: Xing, Qunliang, Xu, Mai, Yang, Ren, Liu, Tie, Wang, Zulin
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM301883408
003 DE-627
005 20250226022807.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2944806  |2 doi 
028 5 2 |a pubmed25n1006.xml 
035 |a (DE-627)NLM301883408 
035 |a (NLM)31581073 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guan, Zhenyu  |e verfasserin  |4 aut 
245 1 0 |a MFQE 2.0  |b A New Approach for Multi-Frame Quality Enhancement on Compressed Video 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consecutive frames. Since heavy fluctuation exists across compressed video frames as investigated in this paper, frame similarity can be utilized for quality enhancement of low-quality frames given their neighboring high-quality frames. This task is Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as the first attempt in this direction. In our approach, we first develop a Bidirectional Long Short-Term Memory (BiLSTM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are the input. In MF-CNN, motion between the non-PQF and PQFs is compensated by a motion compensation subnet. Subsequently, a quality enhancement subnet fuses the non-PQF and compensated PQFs, and then reduces the compression artifacts of the non-PQF. Also, PQF quality is enhanced in the same way. Finally, experiments validate the effectiveness and generalization ability of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video 
650 4 |a Journal Article 
700 1 |a Xing, Qunliang  |e verfasserin  |4 aut 
700 1 |a Xu, Mai  |e verfasserin  |4 aut 
700 1 |a Yang, Ren  |e verfasserin  |4 aut 
700 1 |a Liu, Tie  |e verfasserin  |4 aut 
700 1 |a Wang, Zulin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 3 vom: 01. März, Seite 949-963  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:43  |g year:2021  |g number:3  |g day:01  |g month:03  |g pages:949-963 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2944806  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 3  |b 01  |c 03  |h 949-963